AI: improved performance on too many possible targets (fix game freezes and server crashes - see #9539, #9438, #9518, related to #11285, #5023);

This commit is contained in:
Oleg Agafonov 2025-08-10 02:16:18 +04:00
parent 384ce67cc3
commit 2833460e59
10 changed files with 397 additions and 234 deletions

View file

@ -219,6 +219,7 @@ public class ComputerPlayer6 extends ComputerPlayer {
} }
// Condition to stop deeper simulation // Condition to stop deeper simulation
if (SimulationNode2.nodeCount > MAX_SIMULATED_NODES_PER_ERROR) { if (SimulationNode2.nodeCount > MAX_SIMULATED_NODES_PER_ERROR) {
// how-to fix: make sure you are disabled debug mode by COMPUTER_DISABLE_TIMEOUT_IN_GAME_SIMULATIONS = false
throw new IllegalStateException("AI ERROR: too much nodes (possible actions)"); throw new IllegalStateException("AI ERROR: too much nodes (possible actions)");
} }
if (depth <= 0 if (depth <= 0
@ -501,7 +502,7 @@ public class ComputerPlayer6 extends ComputerPlayer {
} }
logger.warn("Possible freeze chain:"); logger.warn("Possible freeze chain:");
if (root != null && chain.isEmpty()) { if (root != null && chain.isEmpty()) {
logger.warn(" - unknown use case"); // maybe can't finish any calc, maybe related to target options, I don't know logger.warn(" - unknown use case (too many possible targets?)"); // maybe can't finish any calc, maybe related to target options, I don't know
} }
chain.forEach(s -> { chain.forEach(s -> {
logger.warn(" - " + s); logger.warn(" - " + s);
@ -642,7 +643,7 @@ public class ComputerPlayer6 extends ComputerPlayer {
return "unknown"; return "unknown";
}) })
.collect(Collectors.joining(", ")); .collect(Collectors.joining(", "));
logger.info(String.format("Sim Prio [%d] -> with choices (TODO): [%d]<diff %s> (%s)", logger.info(String.format("Sim Prio [%d] -> with possible choices: [%d]<diff %s> (%s)",
depth, depth,
currentNode.getDepth(), currentNode.getDepth(),
printDiffScore(currentScore - prevScore), printDiffScore(currentScore - prevScore),
@ -651,14 +652,18 @@ public class ComputerPlayer6 extends ComputerPlayer {
} else if (!currentNode.getChoices().isEmpty()) { } else if (!currentNode.getChoices().isEmpty()) {
// ON CHOICES // ON CHOICES
String choicesInfo = String.join(", ", currentNode.getChoices()); String choicesInfo = String.join(", ", currentNode.getChoices());
logger.info(String.format("Sim Prio [%d] -> with choices (TODO): [%d]<diff %s> (%s)", logger.info(String.format("Sim Prio [%d] -> with possible choices (must not see that code): [%d]<diff %s> (%s)",
depth, depth,
currentNode.getDepth(), currentNode.getDepth(),
printDiffScore(currentScore - prevScore), printDiffScore(currentScore - prevScore),
choicesInfo) choicesInfo)
); );
} else { } else {
throw new IllegalStateException("AI CALC ERROR: unknown calculation result (no abilities, no targets, no choices)"); logger.info(String.format("Sim Prio [%d] -> with do nothing: [%d]<diff %s>",
depth,
currentNode.getDepth(),
printDiffScore(currentScore - prevScore))
);
} }
} }
} }

View file

@ -318,6 +318,7 @@ public final class SimulatedPlayer2 extends ComputerPlayer {
Ability ability = source.copy(); Ability ability = source.copy();
List<Ability> options = getPlayableOptions(ability, game); List<Ability> options = getPlayableOptions(ability, game);
if (options.isEmpty()) { if (options.isEmpty()) {
// no options - activate as is
logger.debug("simulating -- triggered ability:" + ability); logger.debug("simulating -- triggered ability:" + ability);
game.getStack().push(game, new StackAbility(ability, playerId)); game.getStack().push(game, new StackAbility(ability, playerId));
if (ability.activate(game, false) && ability.isUsesStack()) { if (ability.activate(game, false) && ability.isUsesStack()) {
@ -326,6 +327,8 @@ public final class SimulatedPlayer2 extends ComputerPlayer {
game.applyEffects(); game.applyEffects();
game.getPlayers().resetPassed(); game.getPlayers().resetPassed();
} else { } else {
// many options - activate and add to sims tree
// TODO: AI run all sims, but do not use best option for triggers yet
SimulationNode2 parent = (SimulationNode2) game.getCustomData(); SimulationNode2 parent = (SimulationNode2) game.getCustomData();
int depth = parent.getDepth() - 1; int depth = parent.getDepth() - 1;
if (depth == 0) { if (depth == 0) {
@ -350,7 +353,7 @@ public final class SimulatedPlayer2 extends ComputerPlayer {
logger.debug("simulating -- node #:" + SimulationNode2.getCount() + " triggered ability option"); logger.debug("simulating -- node #:" + SimulationNode2.getCount() + " triggered ability option");
for (Target target : ability.getTargets()) { for (Target target : ability.getTargets()) {
for (UUID targetId : target.getTargets()) { for (UUID targetId : target.getTargets()) {
newNode.getTargets().add(targetId); // save for info only (real targets in newNode.ability already) newNode.getTargets().add(targetId); // save for info only (real targets in newNode.game.stack already)
} }
} }
parent.children.add(newNode); parent.children.add(newNode);

View file

@ -6,7 +6,6 @@ import mage.constants.PhaseStep;
import mage.constants.Zone; import mage.constants.Zone;
import mage.game.permanent.Permanent; import mage.game.permanent.Permanent;
import org.junit.Assert; import org.junit.Assert;
import org.junit.Ignore;
import org.junit.Test; import org.junit.Test;
import org.mage.test.serverside.base.CardTestPlayerBaseAI; import org.mage.test.serverside.base.CardTestPlayerBaseAI;
@ -21,7 +20,6 @@ import java.util.List;
* TODO: add tests and implement best choice selection on timeout * TODO: add tests and implement best choice selection on timeout
* (AI must make any good/bad choice on timeout with game log - not a skip) * (AI must make any good/bad choice on timeout with game log - not a skip)
* <p> * <p>
* TODO: AI do not support game simulations for target options in triggered
* *
* @author JayDi85 * @author JayDi85
*/ */
@ -106,28 +104,24 @@ public class SimulationPerformanceAITest extends CardTestPlayerBaseAI {
} }
@Test @Test
@Ignore // enable after triggered supported or need performance test
public void test_ManyTargetOptions_Triggered_Single() { public void test_ManyTargetOptions_Triggered_Single() {
// 2 damage to bear and 3 damage to player B // 2 damage to bear and 3 damage to player B
runManyTargetOptionsInTrigger("1 target creature", 1, 1, false, 20 - 3); runManyTargetOptionsInTrigger("1 target creature", 1, 1, false, 20 - 3);
} }
@Test @Test
@Ignore // enable after triggered supported or need performance test
public void test_ManyTargetOptions_Triggered_Few() { public void test_ManyTargetOptions_Triggered_Few() {
// 4 damage to x2 bears and 1 damage to player B // 4 damage to x2 bears and 1 damage to player B
runManyTargetOptionsInTrigger("2 target creatures", 2, 2, false, 20 - 1); runManyTargetOptionsInTrigger("2 target creatures", 2, 2, false, 20 - 1);
} }
@Test @Test
@Ignore // enable after triggered supported or need performance test
public void test_ManyTargetOptions_Triggered_Many() { public void test_ManyTargetOptions_Triggered_Many() {
// 4 damage to x2 bears and 1 damage to player B // 4 damage to x2 bears and 1 damage to player B
runManyTargetOptionsInTrigger("5 target creatures", 5, 2, false, 20 - 1); runManyTargetOptionsInTrigger("5 target creatures", 5, 2, false, 20 - 1);
} }
@Test @Test
@Ignore // enable after triggered supported or need performance test
public void test_ManyTargetOptions_Triggered_TooMuch() { public void test_ManyTargetOptions_Triggered_TooMuch() {
// warning, can be slow // warning, can be slow
@ -139,7 +133,6 @@ public class SimulationPerformanceAITest extends CardTestPlayerBaseAI {
} }
@Test @Test
@Ignore // enable after triggered supported or need performance test
public void test_ManyTargetOptions_Triggered_TargetGroups() { public void test_ManyTargetOptions_Triggered_TargetGroups() {
// make sure targets optimization can find unique creatures, e.g. damaged // make sure targets optimization can find unique creatures, e.g. damaged
@ -213,4 +206,29 @@ public class SimulationPerformanceAITest extends CardTestPlayerBaseAI {
// 4 damage to x2 bears and 1 damage to damaged bear // 4 damage to x2 bears and 1 damage to damaged bear
runManyTargetOptionsInActivate("5 target creatures with one damaged", 5, 3, true, 20); runManyTargetOptionsInActivate("5 target creatures with one damaged", 5, 3, true, 20);
} }
@Test
public void test_ElderDeepFiend_TooManyUpToChoices() {
// bug: game freeze with 100% CPU usage
// https://github.com/magefree/mage/issues/9518
int cardsCount = 2; // 2+ cards will generate too much target options for simulations
// Boulderfall deals 5 damage divided as you choose among any number of targets.
// Flash
// Emerge {5}{U}{U} (You may cast this spell by sacrificing a creature and paying the emerge cost reduced by that creature's mana value.)
// When you cast this spell, tap up to four target permanents.
addCard(Zone.HAND, playerA, "Elder Deep-Fiend", cardsCount); // {8}
addCard(Zone.BATTLEFIELD, playerA, "Island", 8 * cardsCount);
//
addCard(Zone.BATTLEFIELD, playerB, "Balduvian Bears", 2);
addCard(Zone.BATTLEFIELD, playerB, "Kitesail Corsair", 2);
addCard(Zone.BATTLEFIELD, playerB, "Alpha Tyrranax", 2);
addCard(Zone.BATTLEFIELD, playerB, "Abbey Griffin", 2);
setStrictChooseMode(true);
setStopAt(1, PhaseStep.END_TURN);
execute();
assertPermanentCount(playerA, "Elder Deep-Fiend", cardsCount); // ai must cast it
}
} }

View file

@ -0,0 +1,84 @@
package org.mage.test.AI.basic;
import mage.constants.PhaseStep;
import mage.constants.Zone;
import mage.counters.CounterType;
import org.junit.Ignore;
import org.junit.Test;
import org.mage.test.serverside.base.CardTestPlayerBaseWithAIHelps;
/**
* Make sure AI can simulate priority with triggers resolve
*
* @author JayDi85
*/
public class SimulationTriggersAITest extends CardTestPlayerBaseWithAIHelps {
@Test
@Ignore
// TODO: trigger's target options supported on priority sim, but do not used for some reason
// see addTargetOptions, node.children, ComputerPlayer6->targets, etc
public void test_DeepglowSkate_MustBeSimulated() {
// make sure targets choosing on trigger use same game sims and best results
// When Deepglow Skate enters the battlefield, double the number of each kind of counter on any number
// of target permanents.
addCard(Zone.HAND, playerA, "Deepglow Skate", 1);
addCard(Zone.BATTLEFIELD, playerA, "Island", 5);
//
addCard(Zone.BATTLEFIELD, playerA, "Ajani, Adversary of Tyrants", 1); // x4 loyalty
addCard(Zone.BATTLEFIELD, playerA, "Ajani, Caller of the Pride", 1); // x4 loyalty
//
// This creature enters with a -1/-1 counter on it.
addCard(Zone.BATTLEFIELD, playerA, "Bloodied Ghost", 1); // 3/3
//
// Players can't activate planeswalkers' loyalty abilities.
addCard(Zone.BATTLEFIELD, playerA, "The Immortal Sun", 1); // disable planeswalkers usage by AI
// AI must cast boost and ignore doubling of -1/-1 counters on own creatures due bad score
aiPlayStep(1, PhaseStep.PRECOMBAT_MAIN, playerA);
setStrictChooseMode(true);
setStopAt(1, PhaseStep.END_TURN);
execute();
assertPermanentCount(playerA, "Deepglow Skate", 1);
assertCounterCount(playerA, "Ajani, Adversary of Tyrants", CounterType.LOYALTY, 4 * 2);
assertCounterCount(playerA, "Ajani, Caller of the Pride", CounterType.LOYALTY, 4 * 2);
assertCounterCount(playerA, "Bloodied Ghost", CounterType.M1M1, 1); // make sure AI will not double bad counters
}
@Test
public void test_DeepglowSkate_PerformanceOnTooManyChoices() {
// bug: game freeze with 100% CPU usage
// https://github.com/magefree/mage/issues/9438
int cardsCount = 2; // 2+ cards will generate too much target options for simulations
int boostMultiplier = (int) Math.pow(2, cardsCount);
// When Deepglow Skate enters the battlefield, double the number of each kind of counter on any number
// of target permanents.
addCard(Zone.HAND, playerA, "Deepglow Skate", cardsCount); // {4}{U}
addCard(Zone.BATTLEFIELD, playerA, "Island", 5 * cardsCount);
//
addCard(Zone.BATTLEFIELD, playerA, "Ajani, Adversary of Tyrants", 1); // x4 loyalty
addCard(Zone.BATTLEFIELD, playerA, "Ajani, Caller of the Pride", 1); // x4 loyalty
addCard(Zone.BATTLEFIELD, playerB, "Ajani Goldmane", 1); // x4 loyalty
addCard(Zone.BATTLEFIELD, playerB, "Ajani, Inspiring Leader", 1); // x5 loyalty
//
// Players can't activate planeswalkers' loyalty abilities.
addCard(Zone.BATTLEFIELD, playerA, "The Immortal Sun", 1); // disable planeswalkers usage by AI
// AI must cast multiple booster spells and double only own counters and only good
aiPlayStep(1, PhaseStep.PRECOMBAT_MAIN, playerA);
setStrictChooseMode(true);
setStopAt(1, PhaseStep.END_TURN);
execute();
assertPermanentCount(playerA, "Deepglow Skate", cardsCount);
assertCounterCount(playerA, "Ajani, Adversary of Tyrants", CounterType.LOYALTY, 4 * boostMultiplier);
assertCounterCount(playerA, "Ajani, Caller of the Pride", CounterType.LOYALTY, 4 * boostMultiplier);
assertCounterCount(playerB, "Ajani Goldmane", CounterType.LOYALTY, 4);
assertCounterCount(playerB, "Ajani, Inspiring Leader", CounterType.LOYALTY, 5);
}
}

View file

@ -4524,7 +4524,6 @@ public abstract class PlayerImpl implements Player, Serializable {
} else if (ability.getCosts().getTargets().getNextUnchosen(game) != null) { } else if (ability.getCosts().getTargets().getNextUnchosen(game) != null) {
addCostTargetOptions(options, ability, 0, game); addCostTargetOptions(options, ability, 0, game);
} }
return options; return options;
} }
@ -4565,9 +4564,6 @@ public abstract class PlayerImpl implements Player, Serializable {
*/ */
protected void addTargetOptions(List<Ability> options, Ability option, int targetNum, Game game) { protected void addTargetOptions(List<Ability> options, Ability option, int targetNum, Game game) {
// TODO: target options calculated for triggered ability too, but do not used in real game // TODO: target options calculated for triggered ability too, but do not used in real game
// TODO: there are rare errors with wrong targetNum - maybe multiple game sims can change same target object somehow?
// do not hide NullPointError here, research instead
if (targetNum >= option.getTargets().size()) { if (targetNum >= option.getTargets().size()) {
return; return;
} }
@ -4592,6 +4588,8 @@ public abstract class PlayerImpl implements Player, Serializable {
newOption.getTargets().get(targetNum).addTarget(targetId, newOption, game, true); newOption.getTargets().get(targetNum).addTarget(targetId, newOption, game, true);
} }
} }
// don't forget about target's status (if it zero then must set skip choice too)
newOption.getTargets().get(targetNum).setSkipChoice(targetOption.isSkipChoice());
if (targetNum + 1 < option.getTargets().size()) { if (targetNum + 1 < option.getTargets().size()) {
// fill more targets // fill more targets

View file

@ -41,8 +41,8 @@ public interface Target extends Copyable<Target>, Serializable {
boolean isChoiceCompleted(UUID abilityControllerId, Ability source, Game game, Cards fromCards); boolean isChoiceCompleted(UUID abilityControllerId, Ability source, Game game, Cards fromCards);
/** /**
* Temporary status to work with "up to" targets (mark target that it was skip on selection) * Tests and AI related for "up to" targets (mark target that it was skipped on selection, so new choose dialog will be called)
* TODO: remove after target.chooseXXX remove * Example: AI sim possible target options
*/ */
boolean isSkipChoice(); boolean isSkipChoice();

View file

@ -1,17 +1,13 @@
package mage.target; package mage.target;
import mage.MageObject;
import mage.abilities.Ability; import mage.abilities.Ability;
import mage.abilities.dynamicvalue.DynamicValue; import mage.abilities.dynamicvalue.DynamicValue;
import mage.abilities.dynamicvalue.common.StaticValue; import mage.abilities.dynamicvalue.common.StaticValue;
import mage.cards.Card;
import mage.cards.Cards; import mage.cards.Cards;
import mage.constants.Outcome; import mage.constants.Outcome;
import mage.game.Game; import mage.game.Game;
import mage.game.permanent.Permanent;
import mage.players.Player; import mage.players.Player;
import mage.util.DebugUtil; import mage.util.CardUtil;
import mage.util.RandomUtil;
import java.util.*; import java.util.*;
import java.util.stream.Collectors; import java.util.stream.Collectors;
@ -19,7 +15,7 @@ import java.util.stream.Collectors;
/** /**
* Distribute value between targets list (damage, counters, etc) * Distribute value between targets list (damage, counters, etc)
* *
* @author BetaSteward_at_googlemail.com * @author BetaSteward_at_googlemail.com, JayDi85
*/ */
public abstract class TargetAmount extends TargetImpl { public abstract class TargetAmount extends TargetImpl {
@ -208,217 +204,21 @@ public abstract class TargetAmount extends TargetImpl {
Set<UUID> possibleTargets = possibleTargets(source.getControllerId(), source, game); Set<UUID> possibleTargets = possibleTargets(source.getControllerId(), source, game);
// optimizations for less memory/cpu consumptions // optimizations for less memory/cpu consumptions
printTargetsTableAndVariations("before optimize", game, possibleTargets, options, false); TargetOptimization.printTargetsVariationsForTargetAmount("target amount - before optimize", game, possibleTargets, options, false);
optimizePossibleTargets(source, game, possibleTargets);
printTargetsTableAndVariations("after optimize", game, possibleTargets, options, false);
// calc possible amount variations
addTargets(this, possibleTargets, options, source, game);
printTargetsTableAndVariations("after calc", game, possibleTargets, options, true);
return options;
}
/**
* AI related, trying to reduce targets for simulations
*/
private void optimizePossibleTargets(Ability source, Game game, Set<UUID> possibleTargets) {
// remove duplicated/same creatures (example: distribute 3 damage between 10+ same tokens)
// it must have additional threshold to keep more variations for analyse // it must have additional threshold to keep more variations for analyse
//
// bad example: // bad example:
// - Blessings of Nature // - Blessings of Nature
// - Distribute four +1/+1 counters among any number of target creatures. // - Distribute four +1/+1 counters among any number of target creatures.
// on low targets threshold AI can put 1/1 to opponent's creature instead own, see TargetAmountAITest.test_AI_SimulateTargets // on low targets threshold AI can put 1/1 to opponent's creature instead own, see TargetAmountAITest.test_AI_SimulateTargets
int maxPossibleTargetsToSimulate = CardUtil.overflowMultiply(this.remainingAmount, 2);
TargetOptimization.optimizePossibleTargets(source, game, possibleTargets, maxPossibleTargetsToSimulate);
TargetOptimization.printTargetsVariationsForTargetAmount("target amount - after optimize", game, possibleTargets, options, false);
int maxPossibleTargetsToSimulate = this.remainingAmount * 2; // calc possible amount variations
if (possibleTargets.size() < maxPossibleTargetsToSimulate) { addTargets(this, possibleTargets, options, source, game);
return; TargetOptimization.printTargetsVariationsForTargetAmount("target amount - after calc", game, possibleTargets, options, true);
}
// split targets by groups return options;
Map<UUID, String> targetGroups = new HashMap<>();
possibleTargets.forEach(id -> {
String groupKey = "";
// player
Player player = game.getPlayer(id);
if (player != null) {
groupKey = getTargetGroupKeyAsPlayer(player);
}
// game object
MageObject object = game.getObject(id);
if (object != null) {
groupKey = object.getName();
if (object instanceof Permanent) {
groupKey += getTargetGroupKeyAsPermanent(game, (Permanent) object);
} else if (object instanceof Card) {
groupKey += getTargetGroupKeyAsCard(game, (Card) object);
} else {
groupKey += getTargetGroupKeyAsOther(game, object);
}
}
// unknown - use all
if (groupKey.isEmpty()) {
groupKey = id.toString();
}
targetGroups.put(id, groupKey);
});
Map<String, List<UUID>> groups = new HashMap<>();
targetGroups.forEach((id, groupKey) -> {
groups.computeIfAbsent(groupKey, k -> new ArrayList<>());
groups.get(groupKey).add(id);
});
// optimize logic:
// - use one target from each target group all the time
// - add random target from random group until fill all remainingAmount condition
// use one target per group
Set<UUID> newPossibleTargets = new HashSet<>();
groups.forEach((groupKey, groupTargets) -> {
UUID targetId = RandomUtil.randomFromCollection(groupTargets);
if (targetId != null) {
newPossibleTargets.add(targetId);
groupTargets.remove(targetId);
}
});
// use random target until fill condition
while (newPossibleTargets.size() < maxPossibleTargetsToSimulate) {
String groupKey = RandomUtil.randomFromCollection(groups.keySet());
if (groupKey == null) {
break;
}
List<UUID> groupTargets = groups.getOrDefault(groupKey, null);
if (groupTargets == null || groupTargets.isEmpty()) {
groups.remove(groupKey);
continue;
}
UUID targetId = RandomUtil.randomFromCollection(groupTargets);
if (targetId != null) {
newPossibleTargets.add(targetId);
groupTargets.remove(targetId);
}
}
// keep final result
possibleTargets.clear();
possibleTargets.addAll(newPossibleTargets);
}
private String getTargetGroupKeyAsPlayer(Player player) {
// use all
return String.join(";", Arrays.asList(
player.getName(),
String.valueOf(player.getId().hashCode())
));
}
private String getTargetGroupKeyAsPermanent(Game game, Permanent permanent) {
// split by name and stats
// TODO: rework and combine with PermanentEvaluator (to use battlefield score)
// try to use short text/hash for lesser data on debug
return String.join(";", Arrays.asList(
permanent.getName(),
String.valueOf(permanent.getControllerId().hashCode()),
String.valueOf(permanent.getOwnerId().hashCode()),
String.valueOf(permanent.isTapped()),
String.valueOf(permanent.getPower().getValue()),
String.valueOf(permanent.getToughness().getValue()),
String.valueOf(permanent.getDamage()),
String.valueOf(permanent.getCardType(game).toString().hashCode()),
String.valueOf(permanent.getSubtype(game).toString().hashCode()),
String.valueOf(permanent.getCounters(game).getTotalCount()),
String.valueOf(permanent.getAbilities(game).size()),
String.valueOf(permanent.getRules(game).toString().hashCode())
));
}
private String getTargetGroupKeyAsCard(Game game, Card card) {
// split by name and stats
return String.join(";", Arrays.asList(
card.getName(),
String.valueOf(card.getOwnerId().hashCode()),
String.valueOf(card.getCardType(game).toString().hashCode()),
String.valueOf(card.getSubtype(game).toString().hashCode()),
String.valueOf(card.getCounters(game).getTotalCount()),
String.valueOf(card.getAbilities(game).size()),
String.valueOf(card.getRules(game).toString().hashCode())
));
}
private String getTargetGroupKeyAsOther(Game game, MageObject item) {
// use all
return String.join(";", Arrays.asList(
item.getName(),
String.valueOf(item.getId().hashCode())
));
}
/**
* Debug only. Print targets table and variations.
*/
private void printTargetsTableAndVariations(String info, Game game, Set<UUID> possibleTargets, List<TargetAmount> options, boolean isPrintOptions) {
if (!DebugUtil.AI_SHOW_TARGET_OPTIMIZATION_LOGS) return;
// output example:
//
// Targets (after optimize): 5
// 0. Balduvian Bears [ac8], C, BalduvianBears, DKM:22::0, 2/2
// 1. PlayerA (SimulatedPlayer2)
//
// Target variations (info): 126
// 0 -> 1; 1 -> 1; 2 -> 1; 3 -> 1; 4 -> 1
// 0 -> 1; 1 -> 1; 2 -> 1; 3 -> 2
// 0 -> 1; 1 -> 1; 2 -> 1; 4 -> 2
// print table
List<UUID> list = new ArrayList<>(possibleTargets);
Collections.sort(list);
HashMap<UUID, Integer> targetNumbers = new HashMap<>();
System.out.println();
System.out.println(String.format("Targets (%s): %d", info, list.size()));
for (int i = 0; i < list.size(); i++) {
targetNumbers.put(list.get(i), i);
String targetName;
Player player = game.getPlayer(list.get(i));
if (player != null) {
targetName = player.toString();
} else {
MageObject object = game.getObject(list.get(i));
if (object != null) {
targetName = object.toString();
} else {
targetName = "unknown";
}
}
System.out.println(String.format("%d. %s", i, targetName));
}
System.out.println();
if (!isPrintOptions) {
return;
}
// print amount variations
List<String> res = options
.stream()
.map(t -> t.getTargets()
.stream()
.map(id -> targetNumbers.get(id) + " -> " + t.getTargetAmount(id))
.sorted()
.collect(Collectors.joining("; "))).sorted().collect(Collectors.toList());
System.out.println();
System.out.println(String.format("Target variations (info): %d", options.size()));
System.out.println(String.join("\n", res));
System.out.println();
} }
final protected void addTargets(TargetAmount target, Set<UUID> possibleTargets, List<TargetAmount> options, Ability source, Game game) { final protected void addTargets(TargetAmount target, Set<UUID> possibleTargets, List<TargetAmount> options, Ability source, Game game) {

View file

@ -19,7 +19,7 @@ import mage.util.RandomUtil;
import java.util.*; import java.util.*;
/** /**
* @author BetaSteward_at_googlemail.com * @author BetaSteward_at_googlemail.com, JayDi85
*/ */
public abstract class TargetImpl implements Target { public abstract class TargetImpl implements Target {
@ -321,7 +321,7 @@ public abstract class TargetImpl implements Target {
@Override @Override
public boolean isChoiceSelected() { public boolean isChoiceSelected() {
// min = max = 0 - for abilities with X=0, e.g. nothing to choose // min = max = 0 - for abilities with X=0, e.g. nothing to choose
return chosen || getMaxNumberOfTargets() == 0 && getMinNumberOfTargets() == 0; return chosen || getMaxNumberOfTargets() == 0 && getMinNumberOfTargets() == 0 || isSkipChoice();
} }
@Override @Override
@ -586,11 +586,24 @@ public abstract class TargetImpl implements Target {
@Override @Override
public List<? extends TargetImpl> getTargetOptions(Ability source, Game game) { public List<? extends TargetImpl> getTargetOptions(Ability source, Game game) {
List<TargetImpl> options = new ArrayList<>(); List<TargetImpl> options = new ArrayList<>();
List<UUID> possibleTargets = new ArrayList<>(possibleTargets(source.getControllerId(), source, game)); Set<UUID> possibleTargets = possibleTargets(source.getControllerId(), source, game);
// optimizations for less memory/cpu consumptions
int maxPossibleTargetsToSimulate = Math.min(TargetOptimization.AI_MAX_POSSIBLE_TARGETS_TO_CHOOSE, possibleTargets.size()); // see TargetAmount
if (getMinNumberOfTargets() > 0) {
maxPossibleTargetsToSimulate = Math.max(maxPossibleTargetsToSimulate, getMinNumberOfTargets());
}
TargetOptimization.printTargetsVariationsForTarget("target - before optimize", game, possibleTargets, options, false);
TargetOptimization.optimizePossibleTargets(source, game, possibleTargets, maxPossibleTargetsToSimulate);
TargetOptimization.printTargetsVariationsForTarget("target - after optimize", game, possibleTargets, options, false);
// calc all optimized combinations
// TODO: replace by google/apache lib to generate all combinations
List<UUID> needPossibleTargets = new ArrayList<>(possibleTargets);
// get the length of the array // get the length of the array
// e.g. for {'A','B','C','D'} => N = 4 // e.g. for {'A','B','C','D'} => N = 4
int N = possibleTargets.size(); int N = needPossibleTargets.size();
// not enough targets, return no option // not enough targets, return no option
if (N < getMinNumberOfTargets()) { if (N < getMinNumberOfTargets()) {
return options; return options;
@ -598,6 +611,7 @@ public abstract class TargetImpl implements Target {
// not target but that's allowed, return one empty option // not target but that's allowed, return one empty option
if (N == 0) { if (N == 0) {
TargetImpl target = this.copy(); TargetImpl target = this.copy();
target.setSkipChoice(true);
options.add(target); options.add(target);
return options; return options;
} }
@ -617,6 +631,7 @@ public abstract class TargetImpl implements Target {
int minK = getMinNumberOfTargets(); int minK = getMinNumberOfTargets();
if (getMinNumberOfTargets() == 0) { // add option without targets if possible if (getMinNumberOfTargets() == 0) { // add option without targets if possible
TargetImpl target = this.copy(); TargetImpl target = this.copy();
target.setSkipChoice(true);
options.add(target); options.add(target);
minK = 1; minK = 1;
} }
@ -645,7 +660,7 @@ public abstract class TargetImpl implements Target {
//add the new target option //add the new target option
TargetImpl target = this.copy(); TargetImpl target = this.copy();
for (int i = 0; i < combination.length; i++) { for (int i = 0; i < combination.length; i++) {
target.addTarget(possibleTargets.get(combination[i]), source, game, true); target.addTarget(needPossibleTargets.get(combination[i]), source, game, true);
} }
options.add(target); options.add(target);
index++; index++;
@ -664,6 +679,9 @@ public abstract class TargetImpl implements Target {
} }
} }
} }
TargetOptimization.printTargetsVariationsForTarget("target - after calc", game, possibleTargets, options, true);
return options; return options;
} }

View file

@ -0,0 +1,237 @@
package mage.target;
import mage.MageObject;
import mage.abilities.Ability;
import mage.cards.Card;
import mage.game.Game;
import mage.game.permanent.Permanent;
import mage.players.Player;
import mage.util.DebugUtil;
import mage.util.RandomUtil;
import java.util.*;
import java.util.stream.Collectors;
/**
* Helper class to optimize possible targets list for AI and playable calcs
* <p>
* Features:
* - less possible targets, less combinations, less CPU/memory usage for sims
* - group all possible targets by same characteristics;
* - fill target one by one from each group
*
* @author JayDi85
*/
public class TargetOptimization {
// for up to or any amount - limit max game sims to analyse
// (it's useless to calc all possible combinations on too much targets)
static public int AI_MAX_POSSIBLE_TARGETS_TO_CHOOSE = 7;
public static void optimizePossibleTargets(Ability source, Game game, Set<UUID> possibleTargets, int maxPossibleTargetsToSimulate) {
// remove duplicated/same creatures
// example: distribute 3 damage between 10+ same tokens
// example: target x1 from x10 forests - it's useless to recalc each forest
if (possibleTargets.size() < maxPossibleTargetsToSimulate) {
return;
}
// split targets by groups
Map<UUID, String> targetGroups = new HashMap<>();
possibleTargets.forEach(id -> {
String groupKey = "";
// player
Player player = game.getPlayer(id);
if (player != null) {
groupKey = getTargetGroupKeyAsPlayer(player);
}
// game object
MageObject object = game.getObject(id);
if (object != null) {
groupKey = object.getName();
if (object instanceof Permanent) {
groupKey += getTargetGroupKeyAsPermanent(game, (Permanent) object);
} else if (object instanceof Card) {
groupKey += getTargetGroupKeyAsCard(game, (Card) object);
} else {
groupKey += getTargetGroupKeyAsOther(game, object);
}
}
// unknown - use all
if (groupKey.isEmpty()) {
groupKey = id.toString();
}
targetGroups.put(id, groupKey);
});
Map<String, List<UUID>> groups = new HashMap<>();
targetGroups.forEach((id, groupKey) -> {
groups.computeIfAbsent(groupKey, k -> new ArrayList<>());
groups.get(groupKey).add(id);
});
// optimize logic:
// - use one target from each target group all the time
// - add random target from random group until fill all remainingAmount condition
// use one target per group
Set<UUID> newPossibleTargets = new HashSet<>();
groups.forEach((groupKey, groupTargets) -> {
UUID targetId = RandomUtil.randomFromCollection(groupTargets);
if (targetId != null) {
newPossibleTargets.add(targetId);
groupTargets.remove(targetId);
}
});
// use random target until fill condition
while (newPossibleTargets.size() < maxPossibleTargetsToSimulate) {
String groupKey = RandomUtil.randomFromCollection(groups.keySet());
if (groupKey == null) {
break;
}
List<UUID> groupTargets = groups.getOrDefault(groupKey, null);
if (groupTargets == null || groupTargets.isEmpty()) {
groups.remove(groupKey);
continue;
}
UUID targetId = RandomUtil.randomFromCollection(groupTargets);
if (targetId != null) {
newPossibleTargets.add(targetId);
groupTargets.remove(targetId);
}
}
// keep final result
possibleTargets.clear();
possibleTargets.addAll(newPossibleTargets);
}
private static String getTargetGroupKeyAsPlayer(Player player) {
// use all
return String.join(";", Arrays.asList(
player.getName(),
String.valueOf(player.getId().hashCode())
));
}
private static String getTargetGroupKeyAsPermanent(Game game, Permanent permanent) {
// split by name and stats
// TODO: rework and combine with PermanentEvaluator (to use battlefield score)
// try to use short text/hash for lesser data on debug
return String.join(";", Arrays.asList(
permanent.getName(),
String.valueOf(permanent.getControllerId().hashCode()),
String.valueOf(permanent.getOwnerId().hashCode()),
String.valueOf(permanent.isTapped()),
String.valueOf(permanent.getPower().getValue()),
String.valueOf(permanent.getToughness().getValue()),
String.valueOf(permanent.getDamage()),
String.valueOf(permanent.getCardType(game).toString().hashCode()),
String.valueOf(permanent.getSubtype(game).toString().hashCode()),
String.valueOf(permanent.getCounters(game).getTotalCount()),
String.valueOf(permanent.getAbilities(game).size()),
String.valueOf(permanent.getRules(game).toString().hashCode())
));
}
private static String getTargetGroupKeyAsCard(Game game, Card card) {
// split by name and stats
return String.join(";", Arrays.asList(
card.getName(),
String.valueOf(card.getOwnerId().hashCode()),
String.valueOf(card.getCardType(game).toString().hashCode()),
String.valueOf(card.getSubtype(game).toString().hashCode()),
String.valueOf(card.getCounters(game).getTotalCount()),
String.valueOf(card.getAbilities(game).size()),
String.valueOf(card.getRules(game).toString().hashCode())
));
}
private static String getTargetGroupKeyAsOther(Game game, MageObject item) {
// use all
return String.join(";", Arrays.asList(
item.getName(),
String.valueOf(item.getId().hashCode())
));
}
public static void printTargetsVariationsForTarget(String info, Game game, Set<UUID> possibleTargets, List<TargetImpl> options, boolean isPrintOptions) {
List<Target> usedOptions = options.stream()
.filter(Objects::nonNull)
.map(TargetImpl.class::cast)
.collect(Collectors.toList());
printTargetsTableAndVariationsInner(info, game, possibleTargets, usedOptions, isPrintOptions);
}
public static void printTargetsVariationsForTargetAmount(String info, Game game, Set<UUID> possibleTargets, List<TargetAmount> options, boolean isPrintOptions) {
List<Target> usedOptions = options.stream()
.filter(Objects::nonNull)
.map(TargetImpl.class::cast)
.collect(Collectors.toList());
printTargetsTableAndVariationsInner(info, game, possibleTargets, usedOptions, isPrintOptions);
}
private static void printTargetsTableAndVariationsInner(String info, Game game, Set<UUID> possibleTargets, List<Target> options, boolean isPrintOptions) {
if (!DebugUtil.AI_SHOW_TARGET_OPTIMIZATION_LOGS) return;
// output example:
//
// Targets (after optimize): 5
// 0. Balduvian Bears [ac8], C, BalduvianBears, DKM:22::0, 2/2
// 1. PlayerA (SimulatedPlayer2)
//
// Target variations (info): 126
// 0 -> 1; 1 -> 1; 2 -> 1; 3 -> 1; 4 -> 1
// 0 -> 1; 1 -> 1; 2 -> 1; 3 -> 2
// 0 -> 1; 1 -> 1; 2 -> 1; 4 -> 2
// print table
List<UUID> list = new ArrayList<>(possibleTargets);
Collections.sort(list);
HashMap<UUID, Integer> targetNumbers = new HashMap<>();
System.out.println();
System.out.println(String.format("Targets (%s): %d", info, list.size()));
for (int i = 0; i < list.size(); i++) {
targetNumbers.put(list.get(i), i);
String targetName;
Player player = game.getPlayer(list.get(i));
if (player != null) {
targetName = player.toString();
} else {
MageObject object = game.getObject(list.get(i));
if (object != null) {
targetName = object.toString();
} else {
targetName = "unknown";
}
}
System.out.println(String.format("%d. %s", i, targetName));
}
System.out.println();
if (!isPrintOptions) {
return;
}
// print amount variations
List<String> res = options
.stream()
.map(t -> t.getTargets()
.stream()
.map(id -> targetNumbers.get(id) + (t instanceof TargetAmount ? " -> " + t.getTargetAmount(id) : ""))
.sorted()
.collect(Collectors.joining("; "))).sorted().collect(Collectors.toList());
System.out.println();
System.out.println(String.format("Target variations (info): %d", options.size()));
System.out.println(String.join("\n", res));
System.out.println();
}
}

View file

@ -15,7 +15,7 @@ public class DebugUtil {
// game simulations runs in multiple threads, if you stop code to debug then it will be terminated by timeout // game simulations runs in multiple threads, if you stop code to debug then it will be terminated by timeout
// so AI debug mode will make single simulation thread without any timeouts // so AI debug mode will make single simulation thread without any timeouts
public static boolean AI_ENABLE_DEBUG_MODE = false; public static boolean AI_ENABLE_DEBUG_MODE = false;
public static boolean AI_SHOW_TARGET_OPTIMIZATION_LOGS = false; // works with target amount public static boolean AI_SHOW_TARGET_OPTIMIZATION_LOGS = false; // works with target and target amount calculations
// SERVER // SERVER
// data collectors - enable additional logs and data collection for better AI and human games debugging // data collectors - enable additional logs and data collection for better AI and human games debugging