grumble/server.go

603 lines
14 KiB
Go

// Copyright (c) 2010 The Grumble Authors
// The use of this source code is goverened by a BSD-style
// license that can be found in the LICENSE-file.
package main
import (
"log"
"crypto/tls"
"os"
"net"
"bufio"
"bytes"
"encoding/binary"
"sync"
"goprotobuf.googlecode.com/hg/proto"
"mumbleproto"
"cryptstate"
)
// The default port a Murmur server listens on
const DefaultPort = 64738
const UDPPacketSize = 1024
const CeltCompatBitstream = -2147483637
// Client connection states
const (
StateClientConnected = iota
StateServerSentVersion
StateClientSentVersion
StateClientAuthenticated
StateClientDead
)
// A Murmur server instance
type Server struct {
listener tls.Listener
address string
port int
udpconn *net.UDPConn
incoming chan *Message
outgoing chan *Message
udpsend chan *Message
voicebroadcast chan *VoiceBroadcast
// Config-related
MaxUsers int
MaxBandwidth uint32
// Clients
session uint32
clients map[uint32]*Client
// Host, host/port -> client mapping
hmutex sync.Mutex
hclients map[string][]*Client
hpclients map[string]*Client
// Codec information
AlphaCodec int32
BetaCodec int32
PreferAlphaCodec bool
root *Channel
}
// Allocate a new Murmur instance
func NewServer(addr string, port int) (s *Server, err os.Error) {
s = new(Server)
s.address = addr
s.port = port
s.clients = make(map[uint32]*Client)
s.hclients = make(map[string][]*Client)
s.hpclients = make(map[string]*Client)
s.outgoing = make(chan *Message)
s.incoming = make(chan *Message)
s.udpsend = make(chan *Message)
s.voicebroadcast = make(chan *VoiceBroadcast)
s.MaxBandwidth = 300000
s.MaxUsers = 10
s.root = NewChannel(0, "Root")
go s.handler()
go s.multiplexer()
return
}
// Called by the server to initiate a new client connection.
func (server *Server) NewClient(conn net.Conn) (err os.Error) {
client := new(Client)
addr := conn.RemoteAddr()
if addr == nil {
err = os.NewError("Unable to extract address for client.")
return
}
client.tcpaddr = addr.(*net.TCPAddr)
client.server = server
client.conn = conn
client.reader = bufio.NewReader(client.conn)
client.writer = bufio.NewWriter(client.conn)
client.state = StateClientConnected
client.msgchan = make(chan *Message)
client.udprecv = make(chan []byte)
go client.receiver()
go client.udpreceiver()
go client.sender()
return
}
// Remove a disconnected client from the server's
// internal representation.
func (server *Server) RemoveClient(client *Client) {
server.hmutex.Lock()
if client.udpaddr != nil {
host := client.udpaddr.IP.String()
oldclients := server.hclients[host]
newclients := []*Client{}
for _, hostclient := range oldclients {
if hostclient != client {
newclients = append(newclients, hostclient)
}
}
server.hclients[host] = newclients
server.hpclients[client.udpaddr.String()] = nil, false
}
server.hmutex.Unlock()
server.clients[client.Session] = nil, false
// Remove client from channel
channel := client.Channel
channel.RemoveClient(client)
err := server.broadcastProtoMessage(MessageUserRemove, &mumbleproto.UserRemove{
Session: proto.Uint32(client.Session),
})
if err != nil {
// server panic
}
}
// This is the synchronous handler goroutine.
// Important control channel messages are routed through this Goroutine
// to keep server state synchronized.
func (server *Server) handler() {
for {
select {
// Control channel messages
case msg := <-server.incoming:
client := msg.client
if client.state == StateClientAuthenticated {
server.handleIncomingMessage(client, msg)
} else if client.state == StateClientSentVersion {
server.handleAuthenticate(client, msg)
}
// Voice broadcast
case vb := <-server.voicebroadcast:
log.Printf("VoiceBroadcast!")
if vb.target == 0 {
channel := vb.client.Channel
for _, client := range channel.clients {
if client != vb.client {
client.sendUdp(&Message{
buf: vb.buf,
client: client,
})
}
}
}
}
}
}
// Handle a Authenticate protobuf message.
func (server *Server) handleAuthenticate(client *Client, msg *Message) {
// Is this message not an authenticate message? If not, discard it...
if msg.kind != MessageAuthenticate {
client.Panic("Unexpected message. Expected Authenticate.")
return
}
auth := &mumbleproto.Authenticate{}
err := proto.Unmarshal(msg.buf, auth)
if err != nil {
client.Panic("Unable to unmarshal Authenticate message.")
return
}
// Did we get a username?
if auth.Username == nil {
client.Panic("No username in auth message...")
return
}
client.Username = *auth.Username
// Setup the cryptstate for the client.
client.crypt, err = cryptstate.New()
if err != nil {
client.Panic(err.String())
return
}
err = client.crypt.GenerateKey()
if err != nil {
client.Panic(err.String())
return
}
// Send CryptState information to the client so it can establish an UDP connection,
// if it wishes.
err = client.sendProtoMessage(MessageCryptSetup, &mumbleproto.CryptSetup{
Key: client.crypt.RawKey[0:],
ClientNonce: client.crypt.DecryptIV[0:],
ServerNonce: client.crypt.EncryptIV[0:],
})
if err != nil {
client.Panic(err.String())
}
// Add the client to the connected list
server.session += 1
client.Session = server.session
server.clients[client.Session] = client
// Add codecs
client.codecs = auth.CeltVersions
if len(client.codecs) == 0 {
log.Printf("Client %i connected without CELT codecs.", client.Session)
}
server.updateCodecVersions()
err = client.sendProtoMessage(MessageCodecVersion, &mumbleproto.CodecVersion{
Alpha: proto.Int32(server.AlphaCodec),
Beta: proto.Int32(server.BetaCodec),
PreferAlpha: proto.Bool(server.PreferAlphaCodec),
})
if err != nil {
client.Panic(err.String())
return
}
client.sendChannelList()
client.state = StateClientAuthenticated
// Add the client to the host slice for its host address.
host := client.tcpaddr.IP.String()
server.hmutex.Lock()
server.hclients[host] = append(server.hclients[host], client)
server.hmutex.Unlock()
// Broadcast the the user entered a channel
server.root.AddClient(client)
log.Printf("server.root = %p", server.root)
err = server.broadcastProtoMessage(MessageUserState, &mumbleproto.UserState{
Session: proto.Uint32(client.Session),
Name: proto.String(client.Username),
ChannelId: proto.Uint32(0),
})
if err != nil {
client.Panic(err.String())
}
server.sendUserList(client)
err = client.sendProtoMessage(MessageServerSync, &mumbleproto.ServerSync{
Session: proto.Uint32(client.Session),
MaxBandwidth: proto.Uint32(server.MaxBandwidth),
})
if err != nil {
client.Panic(err.String())
return
}
err = client.sendProtoMessage(MessageServerConfig, &mumbleproto.ServerConfig{
AllowHtml: proto.Bool(true),
MessageLength: proto.Uint32(1000),
ImageMessageLength: proto.Uint32(1000),
})
if err != nil {
client.Panic(err.String())
return
}
client.state = StateClientAuthenticated
}
func (server *Server) updateCodecVersions() {
codecusers := map[int32]int{}
var winner int32
var count int
for _, client := range server.clients {
for _, codec := range client.codecs {
codecusers[codec] += 1
}
}
for codec, users := range codecusers {
if users > count {
count = users
winner = codec
}
}
var current int32
if server.PreferAlphaCodec {
current = server.AlphaCodec
} else {
current = server.BetaCodec
}
if winner == current {
return
}
if winner == CeltCompatBitstream {
server.PreferAlphaCodec = true
} else {
server.PreferAlphaCodec = !server.PreferAlphaCodec
}
if server.PreferAlphaCodec {
server.AlphaCodec = winner
} else {
server.BetaCodec = winner
}
err := server.broadcastProtoMessage(MessageCodecVersion, &mumbleproto.CodecVersion{
Alpha: proto.Int32(server.AlphaCodec),
Beta: proto.Int32(server.BetaCodec),
PreferAlpha: proto.Bool(server.PreferAlphaCodec),
})
if err != nil {
log.Printf("Unable to broadcast.")
return
}
log.Printf("CELT codec switch %v %v (PreferAlpha %v)", server.AlphaCodec, server.BetaCodec, server.PreferAlphaCodec)
return
}
func (server *Server) sendUserList(client *Client) {
for _, user := range server.clients {
if user.state != StateClientAuthenticated {
continue
}
err := client.sendProtoMessage(MessageUserState, &mumbleproto.UserState{
Session: proto.Uint32(user.Session),
Name: proto.String(user.Username),
ChannelId: proto.Uint32(0),
})
log.Printf("Sent one user")
if err != nil {
log.Printf("unable to send!")
continue
}
}
}
func (server *Server) broadcastProtoMessage(kind uint16, msg interface{}) (err os.Error) {
for _, client := range server.clients {
if client.state != StateClientAuthenticated {
continue
}
err := client.sendProtoMessage(kind, msg)
if err != nil {
return
}
}
return
}
func (server *Server) handleIncomingMessage(client *Client, msg *Message) {
log.Printf("Handle Incoming Message")
switch msg.kind {
case MessagePing:
server.handlePingMessage(msg.client, msg)
case MessageChannelRemove:
server.handlePingMessage(msg.client, msg)
case MessageChannelState:
server.handleChannelStateMessage(msg.client, msg)
case MessageUserState:
server.handleUserStateMessage(msg.client, msg)
case MessageUserRemove:
server.handleUserRemoveMessage(msg.client, msg)
case MessageBanList:
server.handleBanListMessage(msg.client, msg)
case MessageTextMessage:
server.handleTextMessage(msg.client, msg)
case MessageACL:
server.handleAclMessage(msg.client, msg)
case MessageQueryUsers:
server.handleQueryUsers(msg.client, msg)
case MessageCryptSetup:
server.handleCryptSetup(msg.client, msg)
case MessageContextActionAdd:
log.Printf("MessageContextActionAdd from client")
case MessageContextAction:
log.Printf("MessageContextAction from client")
case MessageUserList:
log.Printf("MessageUserList from client")
case MessageVoiceTarget:
log.Printf("MessageVoiceTarget from client")
case MessagePermissionQuery:
log.Printf("MessagePermissionQuery from client")
case MessageCodecVersion:
log.Printf("MessageCodecVersion from client")
case MessageUserStats:
server.handleUserStatsMessage(msg.client, msg)
case MessageRequestBlob:
log.Printf("MessageRequestBlob from client")
case MessageServerConfig:
log.Printf("MessageServerConfig from client")
}
}
func (server *Server) multiplexer() {
for {
_ = <-server.outgoing
log.Printf("recvd message to multiplex")
}
}
func (s *Server) SetupUDP() (err os.Error) {
addr := &net.UDPAddr{
Port: s.port,
}
s.udpconn, err = net.ListenUDP("udp", addr)
if err != nil {
return
}
return
}
func (s *Server) SendUDP() {
for {
msg := <-s.udpsend
// Encrypted
if msg.client != nil {
crypted := make([]byte, len(msg.buf)+4)
msg.client.crypt.Encrypt(crypted, msg.buf)
s.udpconn.WriteTo(crypted, msg.client.udpaddr)
// Non-encrypted
} else if msg.address != nil {
s.udpconn.WriteTo(msg.buf, msg.address)
} else {
// Skipping
}
}
}
// Listen for and handle UDP packets.
func (server *Server) ListenUDP() {
buf := make([]byte, UDPPacketSize)
for {
nread, remote, err := server.udpconn.ReadFrom(buf)
if err != nil {
// Not much to do here. This is bad, of course. Should we panic this server instance?
continue
}
udpaddr, ok := remote.(*net.UDPAddr)
if !ok {
log.Printf("No UDPAddr in read packet. Disabling UDP. (Windows?)")
return
}
// Length 12 is for ping datagrams from the ConnectDialog.
if nread == 12 {
readbuf := bytes.NewBuffer(buf)
var (
tmp32 uint32
rand uint64
)
_ = binary.Read(readbuf, binary.BigEndian, &tmp32)
_ = binary.Read(readbuf, binary.BigEndian, &rand)
buffer := bytes.NewBuffer(make([]byte, 0, 24))
_ = binary.Write(buffer, binary.BigEndian, uint32((1<<16)|(2<<8)|2))
_ = binary.Write(buffer, binary.BigEndian, rand)
_ = binary.Write(buffer, binary.BigEndian, uint32(len(server.clients)))
_ = binary.Write(buffer, binary.BigEndian, uint32(server.MaxUsers))
_ = binary.Write(buffer, binary.BigEndian, uint32(server.MaxBandwidth))
server.udpsend <- &Message{
buf: buffer.Bytes(),
address: udpaddr,
}
} else {
var match *Client
plain := make([]byte, nread-4)
// Determine which client sent the the packet. First, we
// check the map 'hpclients' in the server struct. It maps
// a hort-post combination to a client.
//
// If we don't find any matches, we look in the 'hclients',
// which maps a host address to a slice of clients.
server.hmutex.Lock()
client, ok := server.hpclients[udpaddr.String()]
if ok {
err = client.crypt.Decrypt(plain[0:], buf[0:nread])
if err != nil {
log.Panicf("Unable to decrypt incoming packet for client %v (host-port matched)", client)
}
match = client
} else {
host := udpaddr.IP.String()
hostclients := server.hclients[host]
for _, client := range hostclients {
err = client.crypt.Decrypt(plain[0:], buf[0:nread])
if err != nil {
continue
} else {
match = client
}
}
if match != nil {
match.udpaddr = udpaddr
server.hpclients[udpaddr.String()] = match
}
}
server.hmutex.Unlock()
// No client found.
if match == nil {
log.Printf("Sender of UDP packet could not be determined. Packet dropped.")
continue
}
match.udp = true
match.udprecv <- plain
}
}
}
// The accept loop of the server.
func (s *Server) ListenAndMurmur() {
// Setup our UDP listener and spawn our reader and writer goroutines
s.SetupUDP()
go s.ListenUDP()
go s.SendUDP()
// Create a new listening TLS socket.
l := NewTLSListener(s.port)
if l == nil {
log.Printf("Unable to create TLS listener")
return
}
log.Printf("Created new Murmur instance on port %v", s.port)
// The main accept loop. Basically, we block
// until we get a new client connection, and
// when we do get a new connection, we spawn
// a new Go-routine to handle the client.
for {
// New client connected
conn, err := l.Accept()
if err != nil {
log.Printf("Unable to accept() new client.")
}
tls, ok := conn.(*tls.Conn)
if !ok {
log.Panic("Internal inconsistency error.")
}
// Force the TLS handshake to get going. We'd like
// this to happen as soon as possible, so we can get
// at client certificates sooner.
tls.Handshake()
// Create a new client connection from our *tls.Conn
// which wraps net.TCPConn.
err = s.NewClient(conn)
if err != nil {
log.Printf("Unable to start new client")
}
log.Printf("num clients = %v", len(s.clients))
}
}