fix #782 (bring vendor into the main tree)

This commit is contained in:
Shivaram Lingamneni 2020-02-12 13:19:23 -05:00
parent 702c7b1e7c
commit d0aa7cc860
616 changed files with 359667 additions and 31 deletions

1
vendor/github.com/tidwall/rtree/.travis.yml generated vendored Normal file
View file

@ -0,0 +1 @@
language: go

19
vendor/github.com/tidwall/rtree/LICENSE generated vendored Normal file
View file

@ -0,0 +1,19 @@
Copyright (c) 2016 Josh Baker
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

22
vendor/github.com/tidwall/rtree/README.md generated vendored Normal file
View file

@ -0,0 +1,22 @@
RTree implementation for Go
===========================
[![Build Status](https://travis-ci.org/tidwall/rtree.svg?branch=master)](https://travis-ci.org/tidwall/rtree)
[![GoDoc](https://godoc.org/github.com/tidwall/rtree?status.svg)](https://godoc.org/github.com/tidwall/rtree)
This package provides an in-memory R-Tree implementation for Go, useful as a spatial data structure.
It has support for 1-20 dimensions, and can store and search multidimensions interchangably in the same tree.
Authors
-------
* 1983 Original algorithm and test code by Antonin Guttman and Michael Stonebraker, UC Berkely
* 1994 ANCI C ported from original test code by Melinda Green
* 1995 Sphere volume fix for degeneracy problem submitted by Paul Brook
* 2004 Templated C++ port by Greg Douglas
* 2016 Go port by Josh Baker
* 2018 Added kNN and merged in some of the RBush logic by Vladimir Agafonkin
License
-------
RTree source code is available under the MIT License.

98
vendor/github.com/tidwall/rtree/base/knn.go generated vendored Normal file
View file

@ -0,0 +1,98 @@
package base
import (
"github.com/tidwall/tinyqueue"
)
type queueItem struct {
node *treeNode
isItem bool
dist float64
}
func (item *queueItem) Less(b tinyqueue.Item) bool {
return item.dist < b.(*queueItem).dist
}
// KNN returns items nearest to farthest. The dist param is the "box distance".
func (tr *RTree) KNN(min, max []float64, center bool, iter func(item interface{}, dist float64) bool) bool {
var isBox bool
knnPoint := make([]float64, tr.dims)
bbox := &treeNode{min: min, max: max}
for i := 0; i < tr.dims; i++ {
knnPoint[i] = (bbox.min[i] + bbox.max[i]) / 2
if !isBox && bbox.min[i] != bbox.max[i] {
isBox = true
}
}
node := tr.data
queue := tinyqueue.New(nil)
for node != nil {
for i := 0; i < node.count; i++ {
child := node.children[i]
var dist float64
if isBox {
dist = boxDistRect(bbox, child)
} else {
dist = boxDistPoint(knnPoint, child)
}
queue.Push(&queueItem{node: child, isItem: node.leaf, dist: dist})
}
for queue.Len() > 0 && queue.Peek().(*queueItem).isItem {
item := queue.Pop().(*queueItem)
if !iter(item.node.unsafeItem().item, item.dist) {
return false
}
}
last := queue.Pop()
if last != nil {
node = (*treeNode)(last.(*queueItem).node)
} else {
node = nil
}
}
return true
}
func boxDistRect(a, b *treeNode) float64 {
var dist float64
for i := 0; i < len(a.min); i++ {
var min, max float64
if a.min[i] > b.min[i] {
min = a.min[i]
} else {
min = b.min[i]
}
if a.max[i] < b.max[i] {
max = a.max[i]
} else {
max = b.max[i]
}
squared := min - max
if squared > 0 {
dist += squared * squared
}
}
return dist
}
func boxDistPoint(point []float64, childBox *treeNode) float64 {
var dist float64
for i := 0; i < len(point); i++ {
d := axisDist(point[i], childBox.min[i], childBox.max[i])
dist += d * d
}
return dist
}
func axisDist(k, min, max float64) float64 {
if k < min {
return min - k
}
if k <= max {
return 0
}
return k - max
}

97
vendor/github.com/tidwall/rtree/base/load.go generated vendored Normal file
View file

@ -0,0 +1,97 @@
package base
import "math"
// Load bulk load items into the R-tree.
func (tr *RTree) Load(mins, maxs [][]float64, items []interface{}) {
if len(items) < tr.minEntries {
for i := 0; i < len(items); i++ {
tr.Insert(mins[i], maxs[i], items[i])
}
return
}
// prefill the items
fitems := make([]*treeNode, len(items))
for i := 0; i < len(items); i++ {
item := &treeItem{min: mins[i], max: maxs[i], item: items[i]}
fitems[i] = item.unsafeNode()
}
// following equations are defined in the paper describing OMT
N := len(fitems)
M := tr.maxEntries
h := int(math.Ceil(math.Log(float64(N)) / math.Log(float64(M))))
Nsubtree := int(math.Pow(float64(M), float64(h-1)))
S := int(math.Ceil(math.Sqrt(float64(N) / float64(Nsubtree))))
// sort by the initial axis
axis := 0
sortByAxis(fitems, axis)
// build the root node. it's split differently from the subtrees.
children := make([]*treeNode, 0, S)
for i := 0; i < S; i++ {
var part []*treeNode
if i == S-1 {
// last split
part = fitems[len(fitems)/S*i:]
} else {
part = fitems[len(fitems)/S*i : len(fitems)/S*(i+1)]
}
children = append(children, tr.omt(part, h-1, axis+1))
}
node := tr.createNode(children)
node.leaf = false
node.height = h
tr.calcBBox(node)
if tr.data.count == 0 {
// save as is if tree is empty
tr.data = node
} else if tr.data.height == node.height {
// split root if trees have the same height
tr.splitRoot(tr.data, node)
} else {
if tr.data.height < node.height {
// swap trees if inserted one is bigger
tr.data, node = node, tr.data
}
// insert the small tree into the large tree at appropriate level
tr.insert(node, nil, tr.data.height-node.height-1, true)
}
}
func (tr *RTree) omt(fitems []*treeNode, h, axis int) *treeNode {
if len(fitems) <= tr.maxEntries {
// reached leaf level; return leaf
children := make([]*treeNode, len(fitems))
copy(children, fitems)
node := tr.createNode(children)
node.height = h
tr.calcBBox(node)
return node
}
// sort the items on a different axis than the previous level.
sortByAxis(fitems, axis%tr.dims)
children := make([]*treeNode, 0, tr.maxEntries)
partsz := len(fitems) / tr.maxEntries
for i := 0; i < tr.maxEntries; i++ {
var part []*treeNode
if i == tr.maxEntries-1 {
// last part
part = fitems[partsz*i:]
} else {
part = fitems[partsz*i : partsz*(i+1)]
}
children = append(children, tr.omt(part, h-1, axis+1))
}
node := tr.createNode(children)
node.height = h
node.leaf = false
tr.calcBBox(node)
return node
}

673
vendor/github.com/tidwall/rtree/base/rtree.go generated vendored Normal file
View file

@ -0,0 +1,673 @@
package base
import (
"math"
"unsafe"
)
// precalculate infinity
var mathInfNeg = math.Inf(-1)
var mathInfPos = math.Inf(+1)
type treeNode struct {
min, max []float64
children []*treeNode
count int
height int
leaf bool
}
func (node *treeNode) unsafeItem() *treeItem {
return (*treeItem)(unsafe.Pointer(node))
}
func (tr *RTree) createNode(children []*treeNode) *treeNode {
n := &treeNode{
height: 1,
leaf: true,
children: make([]*treeNode, tr.maxEntries+1),
}
if len(children) > 0 {
n.count = len(children)
copy(n.children[:n.count], children)
}
n.min = make([]float64, tr.dims)
n.max = make([]float64, tr.dims)
for i := 0; i < tr.dims; i++ {
n.min[i] = mathInfPos
n.max[i] = mathInfNeg
}
return n
}
func (node *treeNode) extend(b *treeNode) {
for i := 0; i < len(node.min); i++ {
if b.min[i] < node.min[i] {
node.min[i] = b.min[i]
}
if b.max[i] > node.max[i] {
node.max[i] = b.max[i]
}
}
}
func (node *treeNode) area() float64 {
area := node.max[0] - node.min[0]
for i := 1; i < len(node.min); i++ {
area *= node.max[i] - node.min[i]
}
return area
}
func (node *treeNode) enlargedAreaAxis(b *treeNode, axis int) float64 {
var max, min float64
if b.max[axis] > node.max[axis] {
max = b.max[axis]
} else {
max = node.max[axis]
}
if b.min[axis] < node.min[axis] {
min = b.min[axis]
} else {
min = node.min[axis]
}
return max - min
}
func (node *treeNode) enlargedArea(b *treeNode) float64 {
area := node.enlargedAreaAxis(b, 0)
for i := 1; i < len(node.min); i++ {
area *= node.enlargedAreaAxis(b, i)
}
return area
}
func (node *treeNode) intersectionAreaAxis(b *treeNode, axis int) float64 {
var max, min float64
if node.max[axis] < b.max[axis] {
max = node.max[axis]
} else {
max = b.max[axis]
}
if node.min[axis] > b.min[axis] {
min = node.min[axis]
} else {
min = b.min[axis]
}
if max > min {
return max - min
}
return 0
}
func (node *treeNode) intersectionArea(b *treeNode) float64 {
area := node.intersectionAreaAxis(b, 0)
for i := 1; i < len(node.min); i++ {
area *= node.intersectionAreaAxis(b, i)
}
return area
}
func (node *treeNode) margin() float64 {
margin := node.max[0] - node.min[0]
for i := 1; i < len(node.min); i++ {
margin += node.max[i] - node.min[i]
}
return margin
}
type result int
const (
not result = 0
intersects result = 1
contains result = 2
)
func (node *treeNode) overlaps(b *treeNode) result {
for i := 0; i < len(node.min); i++ {
if b.min[i] > node.max[i] || b.max[i] < node.min[i] {
return not
}
if node.min[i] > b.min[i] || b.max[i] > node.max[i] {
i++
for ; i < len(node.min); i++ {
if b.min[i] > node.max[i] || b.max[i] < node.min[i] {
return not
}
}
return intersects
}
}
return contains
}
func (node *treeNode) intersects(b *treeNode) bool {
for i := 0; i < len(node.min); i++ {
if b.min[i] > node.max[i] || b.max[i] < node.min[i] {
return false
}
}
return true
}
func (node *treeNode) findItem(item interface{}) int {
for i := 0; i < node.count; i++ {
if node.children[i].unsafeItem().item == item {
return i
}
}
return -1
}
func (node *treeNode) contains(b *treeNode) bool {
for i := 0; i < len(node.min); i++ {
if node.min[i] > b.min[i] || b.max[i] > node.max[i] {
return false
}
}
return true
}
func (node *treeNode) childCount() int {
if node.leaf {
return node.count
}
var n int
for i := 0; i < node.count; i++ {
n += node.children[i].childCount()
}
return n
}
type treeItem struct {
min, max []float64
item interface{}
}
func (item *treeItem) unsafeNode() *treeNode {
return (*treeNode)(unsafe.Pointer(item))
}
// RTree is an R-tree
type RTree struct {
dims int
maxEntries int
minEntries int
data *treeNode // root node
// resusable fields, these help performance of common mutable operations.
reuse struct {
path []*treeNode // for reinsertion path
indexes []int // for remove function
stack []int // for bulk loading
}
}
// New creates a new R-tree
func New(dims, maxEntries int) *RTree {
if dims <= 0 {
panic("invalid dimensions")
}
tr := &RTree{}
tr.dims = dims
tr.maxEntries = int(math.Max(4, float64(maxEntries)))
tr.minEntries = int(math.Max(2, math.Ceil(float64(tr.maxEntries)*0.4)))
tr.data = tr.createNode(nil)
return tr
}
// Insert inserts an item
func (tr *RTree) Insert(min, max []float64, item interface{}) {
if len(min) != tr.dims || len(max) != tr.dims {
panic("invalid dimensions")
}
if item == nil {
panic("nil item")
}
bbox := treeNode{min: min, max: max}
tr.insert(&bbox, item, tr.data.height-1, false)
}
func (tr *RTree) insert(bbox *treeNode, item interface{}, level int, isNode bool) {
tr.reuse.path = tr.reuse.path[:0]
node, insertPath := tr.chooseSubtree(bbox, tr.data, level, tr.reuse.path)
if item == nil {
// item is only nil when bulk loading a node
if node.leaf {
panic("loading node into leaf")
}
node.children[node.count] = bbox
node.count++
} else {
ti := &treeItem{min: bbox.min, max: bbox.max, item: item}
node.children[node.count] = ti.unsafeNode()
node.count++
}
node.extend(bbox)
for level >= 0 {
if insertPath[level].count > tr.maxEntries {
insertPath = tr.split(insertPath, level)
level--
} else {
break
}
}
tr.adjustParentBBoxes(bbox, insertPath, level)
tr.reuse.path = insertPath
}
func (tr *RTree) adjustParentBBoxes(bbox *treeNode, path []*treeNode, level int) {
// adjust bboxes along the given tree path
for i := level; i >= 0; i-- {
path[i].extend(bbox)
}
}
func (tr *RTree) chooseSubtree(bbox, node *treeNode, level int, path []*treeNode) (*treeNode, []*treeNode) {
var targetNode *treeNode
var area, enlargement, minArea, minEnlargement float64
for {
path = append(path, node)
if node.leaf || len(path)-1 == level {
break
}
minEnlargement = mathInfPos
minArea = minEnlargement
for i := 0; i < node.count; i++ {
child := node.children[i]
area = child.area()
enlargement = bbox.enlargedArea(child) - area
if enlargement < minEnlargement {
minEnlargement = enlargement
if area < minArea {
minArea = area
}
targetNode = child
} else if enlargement == minEnlargement {
if area < minArea {
minArea = area
targetNode = child
}
}
}
if targetNode != nil {
node = targetNode
} else if node.count > 0 {
node = (*treeNode)(node.children[0])
} else {
node = nil
}
}
return node, path
}
func (tr *RTree) split(insertPath []*treeNode, level int) []*treeNode {
var node = insertPath[level]
var M = node.count
var m = tr.minEntries
tr.chooseSplitAxis(node, m, M)
splitIndex := tr.chooseSplitIndex(node, m, M)
spliced := make([]*treeNode, node.count-splitIndex)
copy(spliced, node.children[splitIndex:])
node.count = splitIndex
newNode := tr.createNode(spliced)
newNode.height = node.height
newNode.leaf = node.leaf
tr.calcBBox(node)
tr.calcBBox(newNode)
if level != 0 {
insertPath[level-1].children[insertPath[level-1].count] = newNode
insertPath[level-1].count++
} else {
tr.splitRoot(node, newNode)
}
return insertPath
}
func (tr *RTree) chooseSplitIndex(node *treeNode, m, M int) int {
var i int
var bbox1, bbox2 *treeNode
var overlap, area, minOverlap, minArea float64
var index int
minArea = mathInfPos
minOverlap = minArea
for i = m; i <= M-m; i++ {
bbox1 = tr.distBBox(node, 0, i, nil)
bbox2 = tr.distBBox(node, i, M, nil)
overlap = bbox1.intersectionArea(bbox2)
area = bbox1.area() + bbox2.area()
// choose distribution with minimum overlap
if overlap < minOverlap {
minOverlap = overlap
index = i
if area < minArea {
minArea = area
}
} else if overlap == minOverlap {
// otherwise choose distribution with minimum area
if area < minArea {
minArea = area
index = i
}
}
}
return index
}
func (tr *RTree) calcBBox(node *treeNode) {
tr.distBBox(node, 0, node.count, node)
}
func (tr *RTree) chooseSplitAxis(node *treeNode, m, M int) {
minMargin := tr.allDistMargin(node, m, M, 0)
var minAxis int
for axis := 1; axis < tr.dims; axis++ {
margin := tr.allDistMargin(node, m, M, axis)
if margin < minMargin {
minMargin = margin
minAxis = axis
}
}
if minAxis < tr.dims {
tr.sortNodes(node, minAxis)
}
}
func (tr *RTree) splitRoot(node, newNode *treeNode) {
tr.data = tr.createNode([]*treeNode{node, newNode})
tr.data.height = node.height + 1
tr.data.leaf = false
tr.calcBBox(tr.data)
}
func (tr *RTree) distBBox(node *treeNode, k, p int, destNode *treeNode) *treeNode {
if destNode == nil {
destNode = tr.createNode(nil)
} else {
for i := 0; i < tr.dims; i++ {
destNode.min[i] = mathInfPos
destNode.max[i] = mathInfNeg
}
}
for i := k; i < p; i++ {
if node.leaf {
destNode.extend(node.children[i])
} else {
destNode.extend((*treeNode)(node.children[i]))
}
}
return destNode
}
func (tr *RTree) allDistMargin(node *treeNode, m, M int, axis int) float64 {
tr.sortNodes(node, axis)
var leftBBox = tr.distBBox(node, 0, m, nil)
var rightBBox = tr.distBBox(node, M-m, M, nil)
var margin = leftBBox.margin() + rightBBox.margin()
var i int
if node.leaf {
for i = m; i < M-m; i++ {
leftBBox.extend(node.children[i])
margin += leftBBox.margin()
}
for i = M - m - 1; i >= m; i-- {
leftBBox.extend(node.children[i])
margin += rightBBox.margin()
}
} else {
for i = m; i < M-m; i++ {
child := (*treeNode)(node.children[i])
leftBBox.extend(child)
margin += leftBBox.margin()
}
for i = M - m - 1; i >= m; i-- {
child := (*treeNode)(node.children[i])
leftBBox.extend(child)
margin += rightBBox.margin()
}
}
return margin
}
func (tr *RTree) sortNodes(node *treeNode, axis int) {
sortByAxis(node.children[:node.count], axis)
}
func sortByAxis(items []*treeNode, axis int) {
if len(items) < 2 {
return
}
left, right := 0, len(items)-1
pivotIndex := len(items) / 2
items[pivotIndex], items[right] = items[right], items[pivotIndex]
for i := range items {
if items[i].min[axis] < items[right].min[axis] {
items[i], items[left] = items[left], items[i]
left++
}
}
items[left], items[right] = items[right], items[left]
sortByAxis(items[:left], axis)
sortByAxis(items[left+1:], axis)
}
// Search searches the tree for items in the input rectangle
func (tr *RTree) Search(min, max []float64, iter func(item interface{}) bool) bool {
bbox := &treeNode{min: min, max: max}
if !tr.data.intersects(bbox) {
return true
}
return tr.search(tr.data, bbox, iter)
}
func (tr *RTree) search(node, bbox *treeNode, iter func(item interface{}) bool) bool {
if node.leaf {
for i := 0; i < node.count; i++ {
if bbox.intersects(node.children[i]) {
if !iter(node.children[i].unsafeItem().item) {
return false
}
}
}
} else {
for i := 0; i < node.count; i++ {
r := bbox.overlaps(node.children[i])
if r == intersects {
if !tr.search(node.children[i], bbox, iter) {
return false
}
} else if r == contains {
if !scan(node.children[i], iter) {
return false
}
}
}
}
return true
}
func (tr *RTree) IsEmpty() bool {
empty := true
tr.Scan(func(item interface{}) bool {
empty = false
return false
})
return empty
}
// Remove removes an item from the R-tree.
func (tr *RTree) Remove(min, max []float64, item interface{}) {
bbox := &treeNode{min: min, max: max}
tr.remove(bbox, item)
}
func (tr *RTree) remove(bbox *treeNode, item interface{}) {
path := tr.reuse.path[:0]
indexes := tr.reuse.indexes[:0]
var node = tr.data
var i int
var parent *treeNode
var index int
var goingUp bool
for node != nil || len(path) != 0 {
if node == nil {
node = path[len(path)-1]
path = path[:len(path)-1]
if len(path) == 0 {
parent = nil
} else {
parent = path[len(path)-1]
}
i = indexes[len(indexes)-1]
indexes = indexes[:len(indexes)-1]
goingUp = true
}
if node.leaf {
index = node.findItem(item)
if index != -1 {
// item found, remove the item and condense tree upwards
copy(node.children[index:], node.children[index+1:])
node.children[node.count-1] = nil
node.count--
path = append(path, node)
tr.condense(path)
goto done
}
}
if !goingUp && !node.leaf && node.contains(bbox) { // go down
path = append(path, node)
indexes = append(indexes, i)
i = 0
parent = node
node = (*treeNode)(node.children[0])
} else if parent != nil { // go right
i++
if i == parent.count {
node = nil
} else {
node = (*treeNode)(parent.children[i])
}
goingUp = false
} else {
node = nil
}
}
done:
tr.reuse.path = path
tr.reuse.indexes = indexes
return
}
func (tr *RTree) condense(path []*treeNode) {
// go through the path, removing empty nodes and updating bboxes
var siblings []*treeNode
for i := len(path) - 1; i >= 0; i-- {
if path[i].count == 0 {
if i > 0 {
siblings = path[i-1].children[:path[i-1].count]
index := -1
for j := 0; j < len(siblings); j++ {
if siblings[j] == path[i] {
index = j
break
}
}
copy(siblings[index:], siblings[index+1:])
siblings[len(siblings)-1] = nil
path[i-1].count--
//siblings = siblings[:len(siblings)-1]
//path[i-1].children = siblings
} else {
tr.data = tr.createNode(nil) // clear tree
}
} else {
tr.calcBBox(path[i])
}
}
}
// Count returns the number of items in the R-tree.
func (tr *RTree) Count() int {
return tr.data.childCount()
}
// Traverse iterates over the entire R-tree and includes all nodes and items.
func (tr *RTree) Traverse(iter func(min, max []float64, level int, item interface{}) bool) bool {
return tr.traverse(tr.data, iter)
}
func (tr *RTree) traverse(node *treeNode, iter func(min, max []float64, level int, item interface{}) bool) bool {
if !iter(node.min, node.max, int(node.height), nil) {
return false
}
if node.leaf {
for i := 0; i < node.count; i++ {
child := node.children[i]
if !iter(child.min, child.max, 0, child.unsafeItem().item) {
return false
}
}
} else {
for i := 0; i < node.count; i++ {
child := node.children[i]
if !tr.traverse(child, iter) {
return false
}
}
}
return true
}
// Scan iterates over the entire R-tree
func (tr *RTree) Scan(iter func(item interface{}) bool) bool {
return scan(tr.data, iter)
}
func scan(node *treeNode, iter func(item interface{}) bool) bool {
if node.leaf {
for i := 0; i < node.count; i++ {
child := node.children[i]
if !iter(child.unsafeItem().item) {
return false
}
}
} else {
for i := 0; i < node.count; i++ {
child := node.children[i]
if !scan(child, iter) {
return false
}
}
}
return true
}
// Bounds returns the bounding box of the entire R-tree
func (tr *RTree) Bounds() (min, max []float64) {
if tr.data.count > 0 {
return tr.data.min, tr.data.max
}
return make([]float64, tr.dims), make([]float64, tr.dims)
}
// Complexity returns the complexity of the R-tree. The higher the value, the
// more complex the tree. The value of 1 is the lowest.
func (tr *RTree) Complexity() float64 {
var nodeCount int
var itemCount int
tr.Traverse(func(_, _ []float64, level int, _ interface{}) bool {
if level == 0 {
itemCount++
} else {
nodeCount++
}
return true
})
return float64(tr.maxEntries*nodeCount) / float64(itemCount)
}

278
vendor/github.com/tidwall/rtree/rtree.go generated vendored Normal file
View file

@ -0,0 +1,278 @@
package rtree
import (
"math"
"sync"
"github.com/tidwall/rtree/base"
)
type Iterator func(item Item) bool
type Item interface {
Rect(ctx interface{}) (min []float64, max []float64)
}
type RTree struct {
dims int
maxEntries int
ctx interface{}
trs []*base.RTree
used int
}
func New(ctx interface{}) *RTree {
tr := &RTree{
ctx: ctx,
dims: 20,
maxEntries: 13,
}
tr.trs = make([]*base.RTree, 20)
return tr
}
func (tr *RTree) Insert(item Item) {
if item == nil {
panic("nil item")
}
min, max := item.Rect(tr.ctx)
if len(min) != len(max) {
return // just return
panic("invalid item rectangle")
}
if len(min) < 1 || len(min) > len(tr.trs) {
return // just return
panic("invalid dimension")
}
btr := tr.trs[len(min)-1]
if btr == nil {
btr = base.New(len(min), tr.maxEntries)
tr.trs[len(min)-1] = btr
tr.used++
}
amin := make([]float64, len(min))
amax := make([]float64, len(max))
for i := 0; i < len(min); i++ {
amin[i], amax[i] = min[i], max[i]
}
btr.Insert(amin, amax, item)
}
func (tr *RTree) Remove(item Item) {
if item == nil {
panic("nil item")
}
min, max := item.Rect(tr.ctx)
if len(min) != len(max) {
return // just return
panic("invalid item rectangle")
}
if len(min) < 1 || len(min) > len(tr.trs) {
return // just return
panic("invalid dimension")
}
btr := tr.trs[len(min)-1]
if btr == nil {
return
}
amin := make([]float64, len(min))
amax := make([]float64, len(max))
for i := 0; i < len(min); i++ {
amin[i], amax[i] = min[i], max[i]
}
btr.Remove(amin, amax, item)
if btr.IsEmpty() {
tr.trs[len(min)-1] = nil
tr.used--
}
}
func (tr *RTree) Reset() {
for i := 0; i < len(tr.trs); i++ {
tr.trs[i] = nil
}
tr.used = 0
}
func (tr *RTree) Count() int {
var count int
for _, btr := range tr.trs {
if btr != nil {
count += btr.Count()
}
}
return count
}
func (tr *RTree) Search(bounds Item, iter Iterator) {
if bounds == nil {
panic("nil bounds being used for search")
}
min, max := bounds.Rect(tr.ctx)
if len(min) != len(max) {
return // just return
panic("invalid item rectangle")
}
if len(min) < 1 || len(min) > len(tr.trs) {
return // just return
panic("invalid dimension")
}
used := tr.used
for i, btr := range tr.trs {
if used == 0 {
break
}
if btr != nil {
if !search(btr, min, max, i+1, iter) {
return
}
used--
}
}
}
func search(btr *base.RTree, min, max []float64, dims int, iter Iterator) bool {
amin := make([]float64, dims)
amax := make([]float64, dims)
for i := 0; i < dims; i++ {
if i < len(min) {
amin[i] = min[i]
amax[i] = max[i]
} else {
amin[i] = math.Inf(-1)
amax[i] = math.Inf(+1)
}
}
var ended bool
btr.Search(amin, amax, func(item interface{}) bool {
if !iter(item.(Item)) {
ended = true
return false
}
return true
})
return !ended
}
func (tr *RTree) KNN(bounds Item, center bool, iter func(item Item, dist float64) bool) {
if bounds == nil {
panic("nil bounds being used for search")
}
min, max := bounds.Rect(tr.ctx)
if len(min) != len(max) {
return // just return
panic("invalid item rectangle")
}
if len(min) < 1 || len(min) > len(tr.trs) {
return // just return
panic("invalid dimension")
}
if tr.used == 0 {
return
}
if tr.used == 1 {
for i, btr := range tr.trs {
if btr != nil {
knn(btr, min, max, center, i+1, func(item interface{}, dist float64) bool {
return iter(item.(Item), dist)
})
break
}
}
return
}
type queueT struct {
done bool
step int
item Item
dist float64
}
var mu sync.Mutex
var ended bool
queues := make(map[int][]queueT)
cond := sync.NewCond(&mu)
for i, btr := range tr.trs {
if btr != nil {
dims := i + 1
mu.Lock()
queues[dims] = []queueT{}
cond.Signal()
mu.Unlock()
go func(dims int, btr *base.RTree) {
knn(btr, min, max, center, dims, func(item interface{}, dist float64) bool {
mu.Lock()
if ended {
mu.Unlock()
return false
}
queues[dims] = append(queues[dims], queueT{item: item.(Item), dist: dist})
cond.Signal()
mu.Unlock()
return true
})
mu.Lock()
queues[dims] = append(queues[dims], queueT{done: true})
cond.Signal()
mu.Unlock()
}(dims, btr)
}
}
mu.Lock()
for {
ready := true
for i := range queues {
if len(queues[i]) == 0 {
ready = false
break
}
if queues[i][0].done {
delete(queues, i)
}
}
if len(queues) == 0 {
break
}
if ready {
var j int
var minDist float64
var minItem Item
var minQueue int
for i := range queues {
if j == 0 || queues[i][0].dist < minDist {
minDist = queues[i][0].dist
minItem = queues[i][0].item
minQueue = i
}
}
queues[minQueue] = queues[minQueue][1:]
if !iter(minItem, minDist) {
ended = true
break
}
continue
}
cond.Wait()
}
mu.Unlock()
}
func knn(btr *base.RTree, min, max []float64, center bool, dims int, iter func(item interface{}, dist float64) bool) bool {
amin := make([]float64, dims)
amax := make([]float64, dims)
for i := 0; i < dims; i++ {
if i < len(min) {
amin[i] = min[i]
amax[i] = max[i]
} else {
amin[i] = math.Inf(-1)
amax[i] = math.Inf(+1)
}
}
var ended bool
btr.KNN(amin, amax, center, func(item interface{}, dist float64) bool {
if !iter(item.(Item), dist) {
ended = true
return false
}
return true
})
return !ended
}