1
0
Fork 0
forked from External/grumble

pkg/cryptstate, pkg/cryptstate/ocb2: move OCB2 tag verification into ocb2.Decrypt.

This commit is contained in:
Mikkel Krautz 2012-12-08 22:56:05 +01:00
parent 2b12adc014
commit 154b7938d3
3 changed files with 453 additions and 450 deletions

View file

@ -92,8 +92,8 @@ func (cs *CryptState) Decrypt(dst, src []byte) error {
return errors.New("cryptstate: plain_len and src len mismatch")
}
var tag [ocb2.TagSize]byte
ivbyte := src[0]
tag := src[1:4]
restore := false
lost := 0
late := 0
@ -167,13 +167,10 @@ func (cs *CryptState) Decrypt(dst, src []byte) error {
}
}
ocb2.Decrypt(cs.cipher, dst, src[4:], cs.DecryptIV, tag[:])
for i := 0; i < 3; i++ {
if tag[i] != src[i+1] {
cs.DecryptIV = saveiv
return errors.New("tag mismatch")
}
ok := ocb2.Decrypt(cs.cipher, dst, src[4:], cs.DecryptIV, tag[:])
if !ok {
cs.DecryptIV = saveiv
return errors.New("cryptstate: tag mismatch")
}
cs.decryptHistory[cs.DecryptIV[0]] = cs.DecryptIV[0]

View file

@ -1,237 +1,247 @@
// Copyright (c) 2010-2012 The Grumble Authors
// The use of this source code is goverened by a BSD-style
// license that can be found in the LICENSE-file.
// Package ocb2 implements the version 2 of the OCB authenticated-encryption algorithm.
// OCB2 is specified in http://www.cs.ucdavis.edu/~rogaway/papers/draft-krovetz-ocb-00.txt.
//
// Note that this implementation is limited to block ciphers with a block size of 128 bits.
//
// It should also be noted that OCB's author, Phil Rogaway <rogaway@cs.ucdavis.edu>, holds
// several US patents on the algorithm. This should be considered before using this code
// in your own projects. See OCB's FAQ for more info:
// http://www.cs.ucdavis.edu/~rogaway/ocb/ocb-faq.htm#patent:phil
//
// The Mumble Project has a license to use OCB mode in its BSD licensed code on a royalty
// free basis.
package ocb2
import "crypto/cipher"
const (
// BlockSize defines the block size that this particular implementation
// of OCB2 is made to work on.
BlockSize = 16
// TagSize specifies the length in bytes of a full OCB2 tag.
// As per the specification, applications may truncate their
// tags to a given length, but advocates that typical applications
// should use a tag length of at least 8 bytes (64 bits).
TagSize = BlockSize
// NonceSize specifies the length in bytes of an OCB2 nonce.
NonceSize = BlockSize
)
// zeros fills block with zero bytes.
func zeros(block []byte) {
for i := range block {
block[i] = 0
}
}
// xor outputs the bitwise exclusive-or of a and b to dst.
func xor(dst []byte, a []byte, b []byte) {
for i := 0; i < BlockSize; i++ {
dst[i] = a[i] ^ b[i]
}
}
// times2 performs the times2 operation, defined as:
//
// times2(S)
// S << 1 if S[1] = 0, and (S << 1) xor const(bitlength(S)) if S[1] = 1.
//
// where const(n) is defined as
//
// const(n)
// The lexicographically first n-bit string C among all
// strings that have a minimal possible number of "1"
// bits and which name a polynomial x^n + C[1] *
// x^{n-1} + ... + C[n-1] * x^1 + C[n] * x^0 that is
// irreducible over the field with two elements. In
// particular, const(128) = num2str(135, 128). For
// other values of n, refer to a standard table of
// irreducible polynomials [G. Seroussi,
// "Table of low-weight binary irreducible polynomials",
// HP Labs Technical Report HPL-98-135, 1998.].
//
// and num2str(x, n) is defined as
//
// num2str(x, n)
// The n-bit binary representation of the integer x.
// More formally, the n-bit string S where x = S[1] *
// 2^{n-1} + S[2] * 2^{n-2} + ... + S[n] * 2^{0}. Only
// used when 0 <= x < 2^n.
//
// For our 128-bit block size implementation, this means that
// the xor with const(bitlength(S)) if S[1] = 1 is implemented
// by simply xor'ing the last byte with the number 135 when
// S[1] = 1.
func times2(block []byte) {
carry := (block[0] >> 7) & 0x1
for i := 0; i < BlockSize-1; i++ {
block[i] = (block[i] << 1) | ((block[i+1] >> 7) & 0x1)
}
block[BlockSize-1] = (block[BlockSize-1] << 1) ^ (carry * 135)
}
// times3 performs the times3 operation, defined as:
//
// times3(S)
// times2(S) xor S
func times3(block []byte) {
carry := (block[0] >> 7) & 0x1
for i := 0; i < BlockSize-1; i++ {
block[i] ^= (block[i] << 1) | ((block[i+1] >> 7) & 0x1)
}
block[BlockSize-1] ^= ((block[BlockSize-1] << 1) ^ (carry * 135))
}
// Encrypt encrypts the plaintext src and outputs the corresponding ciphertext into dst.
// Besides outputting a ciphertext into dst, Encrypt also outputs an authentication tag
// of ocb2.TagSize bytes into tag, which should be used to verify the authenticity of the
// message on the receiving side.
//
// To ensure both authenticity and secrecy of messages, each invocation to this function must
// be given an unique nonce of ocb2.NonceSize bytes. The nonce need not be secret (it can be
// a counter), but it needs to be unique.
//
// The block cipher used in function must work on a block size equal to ocb2.BlockSize.
// The tag slice used in this function must have a length equal to ocb2.TagSize.
// The nonce slice used in this function must have a length equal to ocb2.NonceSize.
// If any of the above are violated, Encrypt will panic.
func Encrypt(cipher cipher.Block, dst []byte, src []byte, nonce []byte, tag []byte) {
if cipher.BlockSize() != BlockSize {
panic("ocb2: cipher blocksize is not equal to ocb2.BlockSize")
}
if len(nonce) != NonceSize {
panic("ocb2: nonce length is not equal to ocb2.NonceSize")
}
if len(tag) != TagSize {
panic("ocb2: tag length is not equal to ocb2.TagSize")
}
var (
checksum [BlockSize]byte
delta [BlockSize]byte
tmp [BlockSize]byte
pad [BlockSize]byte
off int
)
cipher.Encrypt(delta[0:], nonce[0:])
zeros(checksum[0:])
remain := len(src)
for remain > BlockSize {
times2(delta[0:])
xor(tmp[0:], delta[0:], src[off:off+BlockSize])
cipher.Encrypt(tmp[0:], tmp[0:])
xor(dst[off:off+BlockSize], delta[0:], tmp[0:])
xor(checksum[0:], checksum[0:], src[off:off+BlockSize])
remain -= BlockSize
off += BlockSize
}
times2(delta[0:])
zeros(tmp[0:])
num := remain * 8
tmp[BlockSize-2] = uint8((uint32(num) >> 8) & 0xff)
tmp[BlockSize-1] = uint8(num & 0xff)
xor(tmp[0:], tmp[0:], delta[0:])
cipher.Encrypt(pad[0:], tmp[0:])
copied := copy(tmp[0:], src[off:])
if copied != remain {
panic("ocb2: copy failed")
}
if copy(tmp[copied:], pad[copied:]) != (BlockSize - remain) {
panic("ocb2: copy failed")
}
xor(checksum[0:], checksum[0:], tmp[0:])
xor(tmp[0:], pad[0:], tmp[0:])
if copy(dst[off:], tmp[0:]) != remain {
panic("ocb2: copy failed")
}
times3(delta[0:])
xor(tmp[0:], delta[0:], checksum[0:])
cipher.Encrypt(tag[0:], tmp[0:])
}
// Decrypt takes a ciphertext and a nonce as its input and outputs a decrypted plaintext
// and corresponding authentication tag.
//
// Before using the decrpyted plaintext, the application
// should verify that the computed authentication tag matches the tag that was produced when
// encrypting the message (taking into consideration that OCB tags are allowed to be truncated
// to a length less than ocb.TagSize).
//
// The block cipher used in function must work on a block size equal to ocb2.BlockSize.
// The tag slice used in this function must have a length equal to ocb2.TagSize.
// The nonce slice used in this function must have a length equal to ocb2.NonceSize.
// If any of the above are violated, Encrypt will panic.
func Decrypt(cipher cipher.Block, plain []byte, encrypted []byte, nonce []byte, tag []byte) {
if cipher.BlockSize() != BlockSize {
panic("ocb2: cipher blocksize is not equal to ocb2.BlockSize")
}
if len(nonce) != NonceSize {
panic("ocb2: nonce length is not equal to ocb2.NonceSize")
}
if len(tag) != TagSize {
panic("ocb2: tag length is not equal to ocb2.TagSize")
}
var (
checksum [BlockSize]byte
delta [BlockSize]byte
tmp [BlockSize]byte
pad [BlockSize]byte
off int
)
cipher.Encrypt(delta[0:], nonce[0:])
zeros(checksum[0:])
remain := len(encrypted)
for remain > BlockSize {
times2(delta[0:])
xor(tmp[0:], delta[0:], encrypted[off:off+BlockSize])
cipher.Decrypt(tmp[0:], tmp[0:])
xor(plain[off:off+BlockSize], delta[0:], tmp[0:])
xor(checksum[0:], checksum[0:], plain[off:off+BlockSize])
off += BlockSize
remain -= BlockSize
}
times2(delta[0:])
zeros(tmp[0:])
num := remain * 8
tmp[BlockSize-2] = uint8((uint32(num) >> 8) & 0xff)
tmp[BlockSize-1] = uint8(num & 0xff)
xor(tmp[0:], tmp[0:], delta[0:])
cipher.Encrypt(pad[0:], tmp[0:])
zeros(tmp[0:])
copied := copy(tmp[0:remain], encrypted[off:off+remain])
if copied != remain {
panic("ocb2: copy failed")
}
xor(tmp[0:], tmp[0:], pad[0:])
xor(checksum[0:], checksum[0:], tmp[0:])
copied = copy(plain[off:off+remain], tmp[0:remain])
if copied != remain {
panic("ocb2: copy failed")
}
times3(delta[0:])
xor(tmp[0:], delta[0:], checksum[0:])
cipher.Encrypt(tag[0:], tmp[0:])
}
// Copyright (c) 2010-2012 The Grumble Authors
// The use of this source code is goverened by a BSD-style
// license that can be found in the LICENSE-file.
// Package ocb2 implements the version 2 of the OCB authenticated-encryption algorithm.
// OCB2 is specified in http://www.cs.ucdavis.edu/~rogaway/papers/draft-krovetz-ocb-00.txt.
//
// Note that this implementation is limited to block ciphers with a block size of 128 bits.
//
// It should also be noted that OCB's author, Phil Rogaway <rogaway@cs.ucdavis.edu>, holds
// several US patents on the algorithm. This should be considered before using this code
// in your own projects. See OCB's FAQ for more info:
// http://www.cs.ucdavis.edu/~rogaway/ocb/ocb-faq.htm#patent:phil
//
// The Mumble Project has a license to use OCB mode in its BSD licensed code on a royalty
// free basis.
package ocb2
import (
"crypto/cipher"
"crypto/subtle"
)
const (
// BlockSize defines the block size that this particular implementation
// of OCB2 is made to work on.
BlockSize = 16
// TagSize specifies the length in bytes of a full OCB2 tag.
// As per the specification, applications may truncate their
// tags to a given length, but advocates that typical applications
// should use a tag length of at least 8 bytes (64 bits).
TagSize = BlockSize
// NonceSize specifies the length in bytes of an OCB2 nonce.
NonceSize = BlockSize
)
// zeros fills block with zero bytes.
func zeros(block []byte) {
for i := range block {
block[i] = 0
}
}
// xor outputs the bitwise exclusive-or of a and b to dst.
func xor(dst []byte, a []byte, b []byte) {
for i := 0; i < BlockSize; i++ {
dst[i] = a[i] ^ b[i]
}
}
// times2 performs the times2 operation, defined as:
//
// times2(S)
// S << 1 if S[1] = 0, and (S << 1) xor const(bitlength(S)) if S[1] = 1.
//
// where const(n) is defined as
//
// const(n)
// The lexicographically first n-bit string C among all
// strings that have a minimal possible number of "1"
// bits and which name a polynomial x^n + C[1] *
// x^{n-1} + ... + C[n-1] * x^1 + C[n] * x^0 that is
// irreducible over the field with two elements. In
// particular, const(128) = num2str(135, 128). For
// other values of n, refer to a standard table of
// irreducible polynomials [G. Seroussi,
// "Table of low-weight binary irreducible polynomials",
// HP Labs Technical Report HPL-98-135, 1998.].
//
// and num2str(x, n) is defined as
//
// num2str(x, n)
// The n-bit binary representation of the integer x.
// More formally, the n-bit string S where x = S[1] *
// 2^{n-1} + S[2] * 2^{n-2} + ... + S[n] * 2^{0}. Only
// used when 0 <= x < 2^n.
//
// For our 128-bit block size implementation, this means that
// the xor with const(bitlength(S)) if S[1] = 1 is implemented
// by simply xor'ing the last byte with the number 135 when
// S[1] = 1.
func times2(block []byte) {
carry := (block[0] >> 7) & 0x1
for i := 0; i < BlockSize-1; i++ {
block[i] = (block[i] << 1) | ((block[i+1] >> 7) & 0x1)
}
block[BlockSize-1] = (block[BlockSize-1] << 1) ^ (carry * 135)
}
// times3 performs the times3 operation, defined as:
//
// times3(S)
// times2(S) xor S
func times3(block []byte) {
carry := (block[0] >> 7) & 0x1
for i := 0; i < BlockSize-1; i++ {
block[i] ^= (block[i] << 1) | ((block[i+1] >> 7) & 0x1)
}
block[BlockSize-1] ^= ((block[BlockSize-1] << 1) ^ (carry * 135))
}
// Encrypt encrypts the plaintext src and outputs the corresponding ciphertext into dst.
// Besides outputting a ciphertext into dst, Encrypt also outputs an authentication tag
// of ocb2.TagSize bytes into tag, which should be used to verify the authenticity of the
// message on the receiving side.
//
// To ensure both authenticity and secrecy of messages, each invocation to this function must
// be given an unique nonce of ocb2.NonceSize bytes. The nonce need not be secret (it can be
// a counter), but it needs to be unique.
//
// The block cipher used in function must work on a block size equal to ocb2.BlockSize.
// The tag slice used in this function must have a length equal to ocb2.TagSize.
// The nonce slice used in this function must have a length equal to ocb2.NonceSize.
// If any of the above are violated, Encrypt will panic.
func Encrypt(cipher cipher.Block, dst []byte, src []byte, nonce []byte, tag []byte) {
if cipher.BlockSize() != BlockSize {
panic("ocb2: cipher blocksize is not equal to ocb2.BlockSize")
}
if len(nonce) != NonceSize {
panic("ocb2: nonce length is not equal to ocb2.NonceSize")
}
if len(tag) != TagSize {
panic("ocb2: tag length is not equal to ocb2.TagSize")
}
var (
checksum [BlockSize]byte
delta [BlockSize]byte
tmp [BlockSize]byte
pad [BlockSize]byte
off int
)
cipher.Encrypt(delta[0:], nonce[0:])
zeros(checksum[0:])
remain := len(src)
for remain > BlockSize {
times2(delta[0:])
xor(tmp[0:], delta[0:], src[off:off+BlockSize])
cipher.Encrypt(tmp[0:], tmp[0:])
xor(dst[off:off+BlockSize], delta[0:], tmp[0:])
xor(checksum[0:], checksum[0:], src[off:off+BlockSize])
remain -= BlockSize
off += BlockSize
}
times2(delta[0:])
zeros(tmp[0:])
num := remain * 8
tmp[BlockSize-2] = uint8((uint32(num) >> 8) & 0xff)
tmp[BlockSize-1] = uint8(num & 0xff)
xor(tmp[0:], tmp[0:], delta[0:])
cipher.Encrypt(pad[0:], tmp[0:])
copied := copy(tmp[0:], src[off:])
if copied != remain {
panic("ocb2: copy failed")
}
if copy(tmp[copied:], pad[copied:]) != (BlockSize - remain) {
panic("ocb2: copy failed")
}
xor(checksum[0:], checksum[0:], tmp[0:])
xor(tmp[0:], pad[0:], tmp[0:])
if copy(dst[off:], tmp[0:]) != remain {
panic("ocb2: copy failed")
}
times3(delta[0:])
xor(tmp[0:], delta[0:], checksum[0:])
cipher.Encrypt(tag[0:], tmp[0:])
}
// Decrypt takes a ciphertext, a nonce, and a tag as its input and outputs a decrypted
// plaintext (if successful) and a boolean flag that determines whether the function
// successfully decrypted the given ciphertext.
//
// Before using the decrpyted plaintext, the application
// should verify that the computed authentication tag matches the tag that was produced when
// encrypting the message (taking into consideration that OCB tags are allowed to be truncated
// to a length less than ocb.TagSize).
//
// The block cipher used in function must work on a block size equal to ocb2.BlockSize.
// The tag slice used in this function must have a length equal to ocb2.TagSize.
// The nonce slice used in this function must have a length equal to ocb2.NonceSize.
// If any of the above are violated, Encrypt will panic.
func Decrypt(cipher cipher.Block, plain []byte, encrypted []byte, nonce []byte, tag []byte) bool {
if cipher.BlockSize() != BlockSize {
panic("ocb2: cipher blocksize is not equal to ocb2.BlockSize")
}
if len(nonce) != NonceSize {
panic("ocb2: nonce length is not equal to ocb2.NonceSize")
}
var (
checksum [BlockSize]byte
delta [BlockSize]byte
tmp [BlockSize]byte
pad [BlockSize]byte
calcTag [NonceSize]byte
off int
)
cipher.Encrypt(delta[0:], nonce[0:])
zeros(checksum[0:])
remain := len(encrypted)
for remain > BlockSize {
times2(delta[0:])
xor(tmp[0:], delta[0:], encrypted[off:off+BlockSize])
cipher.Decrypt(tmp[0:], tmp[0:])
xor(plain[off:off+BlockSize], delta[0:], tmp[0:])
xor(checksum[0:], checksum[0:], plain[off:off+BlockSize])
off += BlockSize
remain -= BlockSize
}
times2(delta[0:])
zeros(tmp[0:])
num := remain * 8
tmp[BlockSize-2] = uint8((uint32(num) >> 8) & 0xff)
tmp[BlockSize-1] = uint8(num & 0xff)
xor(tmp[0:], tmp[0:], delta[0:])
cipher.Encrypt(pad[0:], tmp[0:])
zeros(tmp[0:])
copied := copy(tmp[0:remain], encrypted[off:off+remain])
if copied != remain {
panic("ocb2: copy failed")
}
xor(tmp[0:], tmp[0:], pad[0:])
xor(checksum[0:], checksum[0:], tmp[0:])
copied = copy(plain[off:off+remain], tmp[0:remain])
if copied != remain {
panic("ocb2: copy failed")
}
times3(delta[0:])
xor(tmp[0:], delta[0:], checksum[0:])
cipher.Encrypt(calcTag[0:], tmp[0:])
// Compare the calculated tag with the expected tag. Truncate
// the computed tag if necessary.
if subtle.ConstantTimeCompare(calcTag[:len(tag)], tag) != 1 {
return false
}
return true
}

View file

@ -1,205 +1,201 @@
// Copyright (c) 2010-2012 The Grumble Authors
// The use of this source code is goverened by a BSD-style
// license that can be found in the LICENSE-file.
package ocb2
import (
"bytes"
"crypto/aes"
"encoding/hex"
"testing"
)
func MustDecodeHex(s string) []byte {
buf, err := hex.DecodeString(s)
if err != nil {
panic("MustDecodeHex: " + err.Error())
}
return buf
}
type ocbVector struct {
Name string
Key string
Nonce string
Header string
PlainText string
CipherText string
Tag string
}
func (v ocbVector) KeyBytes() []byte {
return MustDecodeHex(v.Key)
}
func (v ocbVector) NonceBytes() []byte {
return MustDecodeHex(v.Nonce)
}
func (v ocbVector) PlainTextBytes() []byte {
return MustDecodeHex(v.PlainText)
}
func (v ocbVector) CipherTextBytes() []byte {
return MustDecodeHex(v.CipherText)
}
func (v ocbVector) TagBytes() []byte {
return MustDecodeHex(v.Tag)
}
// ocb128Vectors are the test vectors for OCB-AES128 from
// http://www.cs.ucdavis.edu/~rogaway/papers/draft-krovetz-ocb-00.txt
//
// Note: currently, the vectors with headers are not included in this list
// as this implementation does not implement header authentication.
var ocb128Vectors = []ocbVector{
{
Name: "OCB2-AES-128-001",
Key: "000102030405060708090A0B0C0D0E0F",
Nonce: "000102030405060708090A0B0C0D0E0F",
PlainText: "",
CipherText: "",
Tag: "BF3108130773AD5EC70EC69E7875A7B0",
},
{
Name: "OCB2-AES-128-002",
Key: "000102030405060708090A0B0C0D0E0F",
Nonce: "000102030405060708090A0B0C0D0E0F",
PlainText: "0001020304050607",
CipherText: "C636B3A868F429BB",
Tag: "A45F5FDEA5C088D1D7C8BE37CABC8C5C",
},
{
Name: "OCB2-AES-128-003",
Key: "000102030405060708090A0B0C0D0E0F",
Nonce: "000102030405060708090A0B0C0D0E0F",
PlainText: "000102030405060708090A0B0C0D0E0F",
CipherText: "52E48F5D19FE2D9869F0C4A4B3D2BE57",
Tag: "F7EE49AE7AA5B5E6645DB6B3966136F9",
},
{
Name: "OCB2-AES-128-003",
Key: "000102030405060708090A0B0C0D0E0F",
Nonce: "000102030405060708090A0B0C0D0E0F",
PlainText: "000102030405060708090A0B0C0D0E0F1011121314151617",
CipherText: "F75D6BC8B4DC8D66B836A2B08B32A636CC579E145D323BEB",
Tag: "A1A50F822819D6E0A216784AC24AC84C",
},
{
Name: "OCB2-AES-128-004",
Key: "000102030405060708090A0B0C0D0E0F",
Nonce: "000102030405060708090A0B0C0D0E0F",
PlainText: "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F",
CipherText: "F75D6BC8B4DC8D66B836A2B08B32A636CEC3C555037571709DA25E1BB0421A27",
Tag: "09CA6C73F0B5C6C5FD587122D75F2AA3",
},
{
Name: "OCB2-AES-128-005",
Key: "000102030405060708090A0B0C0D0E0F",
Nonce: "000102030405060708090A0B0C0D0E0F",
PlainText: "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F2021222324252627",
CipherText: "F75D6BC8B4DC8D66B836A2B08B32A6369F1CD3C5228D79FD6C267F5F6AA7B231C7DFB9D59951AE9C",
Tag: "9DB0CDF880F73E3E10D4EB3217766688",
},
}
func TestTimes2(t *testing.T) {
msg := [aes.BlockSize]byte{
0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
}
expected := [aes.BlockSize]byte{
0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7b,
}
times2(msg[0:])
if !bytes.Equal(msg[0:], expected[0:]) {
t.Fatalf("times2 produces invalid output: %v, expected: %v", msg, expected)
}
}
func TestTimes3(t *testing.T) {
msg := [aes.BlockSize]byte{
0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
}
expected := [aes.BlockSize]byte{
0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x85,
}
times3(msg[0:])
if !bytes.Equal(msg[0:], expected[0:]) {
t.Errorf("times3 produces invalid output: %v, expected: %v", msg, expected)
}
}
func TestZeros(t *testing.T) {
var msg [aes.BlockSize]byte
zeros(msg[0:])
for i := 0; i < len(msg); i++ {
if msg[i] != 0 {
t.Fatalf("zeros does not zero slice.")
}
}
}
func TestXor(t *testing.T) {
msg := [aes.BlockSize]byte{
0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
}
var out [aes.BlockSize]byte
xor(out[0:], msg[0:], msg[0:])
for i := 0; i < len(out); i++ {
if out[i] != 0 {
t.Fatalf("XOR broken")
}
}
}
func TestEncryptOCBAES128Vectors(t *testing.T) {
for _, vector := range ocb128Vectors {
cipher, err := aes.NewCipher(vector.KeyBytes())
if err != nil {
t.Fatalf("%v", err)
}
plainText := vector.PlainTextBytes()
cipherText := make([]byte, len(plainText))
tag := make([]byte, TagSize)
Encrypt(cipher, cipherText, plainText, vector.NonceBytes(), tag)
expectedCipherText := vector.CipherTextBytes()
if !bytes.Equal(cipherText, expectedCipherText) {
t.Fatalf("expected CipherText %#v, got %#v", expectedCipherText, cipherText)
}
expectedTag := vector.TagBytes()
if !bytes.Equal(tag, expectedTag) {
t.Fatalf("expected tag %#v, got %#v", expectedTag, tag)
}
}
}
func TestDecryptOCBAES128Vectors(t *testing.T) {
for _, vector := range ocb128Vectors {
cipher, err := aes.NewCipher(vector.KeyBytes())
if err != nil {
t.Fatalf("%v", err)
}
cipherText := vector.CipherTextBytes()
plainText := make([]byte, len(cipherText))
tag := make([]byte, TagSize)
Decrypt(cipher, plainText, cipherText, vector.NonceBytes(), tag)
expectedPlainText := vector.PlainTextBytes()
if !bytes.Equal(plainText, expectedPlainText) {
t.Fatalf("expected PlainText %#v, got %#v", expectedPlainText, plainText)
}
expectedTag := vector.TagBytes()
if !bytes.Equal(tag, expectedTag) {
t.Fatalf("expected tag %#v, got %#v", expectedTag, tag)
}
}
}
// Copyright (c) 2010-2012 The Grumble Authors
// The use of this source code is goverened by a BSD-style
// license that can be found in the LICENSE-file.
package ocb2
import (
"bytes"
"crypto/aes"
"encoding/hex"
"testing"
)
func MustDecodeHex(s string) []byte {
buf, err := hex.DecodeString(s)
if err != nil {
panic("MustDecodeHex: " + err.Error())
}
return buf
}
type ocbVector struct {
Name string
Key string
Nonce string
Header string
PlainText string
CipherText string
Tag string
}
func (v ocbVector) KeyBytes() []byte {
return MustDecodeHex(v.Key)
}
func (v ocbVector) NonceBytes() []byte {
return MustDecodeHex(v.Nonce)
}
func (v ocbVector) PlainTextBytes() []byte {
return MustDecodeHex(v.PlainText)
}
func (v ocbVector) CipherTextBytes() []byte {
return MustDecodeHex(v.CipherText)
}
func (v ocbVector) TagBytes() []byte {
return MustDecodeHex(v.Tag)
}
// ocb128Vectors are the test vectors for OCB-AES128 from
// http://www.cs.ucdavis.edu/~rogaway/papers/draft-krovetz-ocb-00.txt
//
// Note: currently, the vectors with headers are not included in this list
// as this implementation does not implement header authentication.
var ocb128Vectors = []ocbVector{
{
Name: "OCB2-AES-128-001",
Key: "000102030405060708090A0B0C0D0E0F",
Nonce: "000102030405060708090A0B0C0D0E0F",
PlainText: "",
CipherText: "",
Tag: "BF3108130773AD5EC70EC69E7875A7B0",
},
{
Name: "OCB2-AES-128-002",
Key: "000102030405060708090A0B0C0D0E0F",
Nonce: "000102030405060708090A0B0C0D0E0F",
PlainText: "0001020304050607",
CipherText: "C636B3A868F429BB",
Tag: "A45F5FDEA5C088D1D7C8BE37CABC8C5C",
},
{
Name: "OCB2-AES-128-003",
Key: "000102030405060708090A0B0C0D0E0F",
Nonce: "000102030405060708090A0B0C0D0E0F",
PlainText: "000102030405060708090A0B0C0D0E0F",
CipherText: "52E48F5D19FE2D9869F0C4A4B3D2BE57",
Tag: "F7EE49AE7AA5B5E6645DB6B3966136F9",
},
{
Name: "OCB2-AES-128-003",
Key: "000102030405060708090A0B0C0D0E0F",
Nonce: "000102030405060708090A0B0C0D0E0F",
PlainText: "000102030405060708090A0B0C0D0E0F1011121314151617",
CipherText: "F75D6BC8B4DC8D66B836A2B08B32A636CC579E145D323BEB",
Tag: "A1A50F822819D6E0A216784AC24AC84C",
},
{
Name: "OCB2-AES-128-004",
Key: "000102030405060708090A0B0C0D0E0F",
Nonce: "000102030405060708090A0B0C0D0E0F",
PlainText: "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F",
CipherText: "F75D6BC8B4DC8D66B836A2B08B32A636CEC3C555037571709DA25E1BB0421A27",
Tag: "09CA6C73F0B5C6C5FD587122D75F2AA3",
},
{
Name: "OCB2-AES-128-005",
Key: "000102030405060708090A0B0C0D0E0F",
Nonce: "000102030405060708090A0B0C0D0E0F",
PlainText: "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F2021222324252627",
CipherText: "F75D6BC8B4DC8D66B836A2B08B32A6369F1CD3C5228D79FD6C267F5F6AA7B231C7DFB9D59951AE9C",
Tag: "9DB0CDF880F73E3E10D4EB3217766688",
},
}
func TestTimes2(t *testing.T) {
msg := [aes.BlockSize]byte{
0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
}
expected := [aes.BlockSize]byte{
0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7b,
}
times2(msg[0:])
if !bytes.Equal(msg[0:], expected[0:]) {
t.Fatalf("times2 produces invalid output: %v, expected: %v", msg, expected)
}
}
func TestTimes3(t *testing.T) {
msg := [aes.BlockSize]byte{
0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
}
expected := [aes.BlockSize]byte{
0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x85,
}
times3(msg[0:])
if !bytes.Equal(msg[0:], expected[0:]) {
t.Errorf("times3 produces invalid output: %v, expected: %v", msg, expected)
}
}
func TestZeros(t *testing.T) {
var msg [aes.BlockSize]byte
zeros(msg[0:])
for i := 0; i < len(msg); i++ {
if msg[i] != 0 {
t.Fatalf("zeros does not zero slice.")
}
}
}
func TestXor(t *testing.T) {
msg := [aes.BlockSize]byte{
0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
}
var out [aes.BlockSize]byte
xor(out[0:], msg[0:], msg[0:])
for i := 0; i < len(out); i++ {
if out[i] != 0 {
t.Fatalf("XOR broken")
}
}
}
func TestEncryptOCBAES128Vectors(t *testing.T) {
for _, vector := range ocb128Vectors {
cipher, err := aes.NewCipher(vector.KeyBytes())
if err != nil {
t.Fatalf("%v", err)
}
plainText := vector.PlainTextBytes()
cipherText := make([]byte, len(plainText))
tag := make([]byte, TagSize)
Encrypt(cipher, cipherText, plainText, vector.NonceBytes(), tag)
expectedCipherText := vector.CipherTextBytes()
if !bytes.Equal(cipherText, expectedCipherText) {
t.Fatalf("expected CipherText %#v, got %#v", expectedCipherText, cipherText)
}
expectedTag := vector.TagBytes()
if !bytes.Equal(tag, expectedTag) {
t.Fatalf("expected tag %#v, got %#v", expectedTag, tag)
}
}
}
func TestDecryptOCBAES128Vectors(t *testing.T) {
for _, vector := range ocb128Vectors {
cipher, err := aes.NewCipher(vector.KeyBytes())
if err != nil {
t.Fatalf("%v", err)
}
cipherText := vector.CipherTextBytes()
plainText := make([]byte, len(cipherText))
if Decrypt(cipher, plainText, cipherText, vector.NonceBytes(), vector.TagBytes()) == false {
t.Fatalf("expected decrypt success; got failure. tag mismatch?")
}
expectedPlainText := vector.PlainTextBytes()
if !bytes.Equal(plainText, expectedPlainText) {
t.Fatalf("expected PlainText %#v, got %#v", expectedPlainText, plainText)
}
}
}